مدلسازی انتشار گاز متان در استخراج زغال‌سنگ (مطالعه موردی معدن مرکزی پروده طبس)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی معدن دانشگاه بیرجند، بیرجند، ایران

2 استادیار گروه ژئوفیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد چالوس، چالوس، ایران

3 کارشناس ارشد مهندس معدن دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

انتشار گازهای ناشی از معدن‌کاری زغال سنگ را می‌توان بر اساس عملیات تجربی، پیش بینی و محاسبه کرد. در این مطالعه، مدلسازی نرخ انتشار گاز متان ناشی از استخراج در معدن زغال‌سنگ مرکزی پروده طبس، مورد بررسی قرار می‌گیرد. بنابراین در ابتدا، مقدار اولیه و نهایی برای جبهه کارهای مورد مطالعه بر اساس شبکه عصبی مدلسازی شد. برای جبهه‌کار P8/TG، مقدار محاسبه شده به وسیله شبکه عصبی بین 4476/0 تا 9921/0 درصد و مقادیر پیش‌بینی شده برای جبهه‌کار P8/MG، با شبکه عصبی بین 1636/0 تا 3379/0 درصد است. شدت انتشار گاز متان معدن مورد مطالعه، بر اساس سطح زغال‌سنگ و میزان حجم گاز با استفاده از کدنویسی متلب انجام گرفت. روش استخراج معادن، بر میزان انتشار گازهای ناشی از معدن‌کاری موثر است. میزان و تراکم شکستگی‌های القا شده، می‌تواند نفوذپذیری را چندین درجه افزایش دهد. افزایش نفوذپذیری می‌تواند به نوبه خود، موجب تسریع در تخلیه گازهای ناشی از استخراج زیرزمینی معادن شود. در این مطالعه میزان انتشار گاز ناشی از حفاری 04/0 درصد، آتش‌کاری 045/0 ، نگهداری040/0 ، خاک‌برداری06/0 و پیکور کاری 25/0 درصد، ، با استفاده از کدنویسی به محتوای ماتریس باقی‌مانده گاز، محاسبه شد. خطاهای کوچک در اندازه‌گیری محتوای گاز، می‌تواند منجر به خطاهای بزرگ در محاسبات تخمین زده شود که این مقدار با استفاده از نرم افزار تعیین شد. ضریب همبستگی ورودی و خروجی داده‌های مورد مطالعه برابر با 984/0 درصد ،تخمین زده شد. مدلسازی انجام شده برای 2 جبهه‌کار فوق، نتیجه خوبی را نشان می‌دهد که می‌تواند در بهبود ایمنی معدن مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of the methane gas diffusion in coal mining, a case study Parvadeh central mine in Tabas

نویسندگان [English]

  • m.amin zareie 1
  • Zohreh Sadat Riazi Rad 2
  • amin faramarz 3
1 M.Sc. in Mining Engineering, University of Birjand, Birjand, Iran
2 Department of Geophysics, Chalous branch, Islamic Azad University, Chalous, Iran
3 M.Sc. in Mining Engineering, Shahid Bahonar University, Kerman, Iran
چکیده [English]

Prediction of gas emissions is a calculation based on empirical processing in the coal mining. In this study, methane diffusion was investigated coal exploration on parameters such as coal gas content, mining, depth, etc., in two faces in the Tabas Parvadeh central coal mining. Therefore, in the beginning, the initial and final values for the studied faces were modeled based on the neural network. The neural network was calculated methane for P8/TG face, between 0.4476%-0.9921% and P8/MG face are between 0.1636%-0.3379%. The intensity of methane gas emission from the studied mine was done based on the level of coal and the amount of gas volume using MATLAB coding. Also, the type of extraction method in the mine was done on the amount of gas emission caused by mining. According to the amount and aggregate of induced fractures, the permeability shows several degrees of increase. These amounts can evacuation the gas caused by the underground extraction of the mine faster. In this study, the amount of gas emissions due to mining was calculated using coding to the content of the remaining gas matrix In this study, the amount of gas emission due to drilling was 0.04%, blasting was 0.045%, support was 0.040%, muckout was 0.06% and jiggring was 0.25%. Small errors in the measurement of gas content can lead to large errors in the estimated calculations, which were determined using the software. The correlation coefficient of input and output of the studied data was estimated as 0.984%. The modeling done for the 2 face current shows a good result which can be used to improve mine safety.

کلیدواژه‌ها [English]

  • Modeling
  • diffusion prediction gas
  • coal
  • methane gas
  • Tabas mine
Zarei Darmian, M.A., Vakili Fathabadi, M. 2019; “Function of Nanosensors in Monitoring and Gases Managing from Coal Mining with Attitude towards P8/TG and P8/MG faces in Central Mine of Tabas Parvadeh” Journal of Biosafety.11(2), 123-134.## Lunarzewski, L. 1998; “Gas emission prediction and recovery in underground coal mines” International Journal of Coal Geology 35, 117–145. ## Karacan, C.Ö., Esterhuizen, G.S., Schatzel, S.J., Diamond, W.P. 2007; “Reservoir simulation based modeling for characterizing longwall methane emissions and gob gas venthole production” International Journal of Coal Geology 71, 225–245. ## ] Hongxing, Z., Quanlin Y., Yuanping C., Chungui G., 2014, “Methane drainage and utilization in coal mines with strong coal and gas outburst dangers: A case study in Luling mine, China”, Journal of Natural Gas Science and Engineering,.20, 357-365. ## Nazar, Kholod., Meredydd, Evans., Raymond, C, Pilcher, Volha, Roshchanka., Felicia, Ruiz., Michael, Coté., Ron, Collings; 2020; “Global methane emissions from coal mining to continue growing even with declining coal production”, Journal of Cleaner Production; 256, 120489. ## Qingdong, Qu., Hua, Guo., Rao, Balusu, 2022, “Methane emissions and dynamics from adjacent coal seams in a high permeability multi-seam mining environment”., International Journal of Coal Geology, 253, 103969. ## Jarosław, Brodny., Dariusz, Felka., Magdalena, Tutak, 2022, “The use of the neuro-fuzzy model to predict the methane hazard during the underground coal mining production process”., Journal of Cleaner Production; 368(25), 133258. ## Report of the Technical Office the Central Mine of Tabas Parvadeh; 2017. ## Karacan, C.Ö., Diamond, W.P., Esterhuizen, G.S., Schatzel, S.J., 2005, “Numerical analysis of the impact of longwall panel width on methane emissions and performance of gob gas ventholes. In” International Coalbed Methane Symposium, Paper 0505, Tuscaloosa, Alabama. ## Karacan C.Ö., Ruiz F.A, Cotè M, Phipps S., 2011, “Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction”, International Journal Coal Geology; 86(2–3), 121–56. ## Sławomir, Kędzior., Marcin, Dreger, 2019, “Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland”., International Journal of Coal Geology 211, 103226. ## Cai J, Xu C, Xia Z, Chen Z, Li X., 2017, “Hydrate based methane recovery from coal mine methane gas in scale up equipment with bubbling”. Energy procedia; 105, 4983-4989. ## Cai J., Xu C., Chen C., Chen Z., Li X., 2014, “Study of Hydrate Based Methane Separation from Coal Bed Methane in Scale up Equipment with Bubbling”, Energy Procedia; 61, 812-816. ## Happel J., Hnatow MA., Meyer H., 2006, “The Study of Separation of Nitrogen from Methane by Hydrate Formation Using a Novel Apparatus”. Annals of the New York Academy of Sciences 715(1):412 – 424. ## Jo, B. W., Khan, R. M. A., 2017, “An Event Reporting and Early Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study”., Applied Sciences Journal.7(9) 925-950. ## Kumar. A., Kingson. T.M.G., Verma. R.P., Kumar. A., Mandal. R., Dutta. S., Chaulya. S.K., Prasad. G.M., 2013, “Application of Gas Monitoring Sensors in Underground Coal Mines and Hazardous Areas”, International Journal of Computer Technology and Electronics Engineering (IJCTEE) 3(3), 9-22. ## Li X S., Cai J., Chen Z Y., Xu C G., 2012, “Hydrate Based Methane Separation from the Drainage Coal Bed Methane with Tetrahydrofuran Solution in the Presence of Sodium Dodecyl Sulfate”, Energ Fuel; 26( 2), 1144–1151. ## Olajossy A., Gawdzik A., Budner Z., Dula J. 2003, “Methane separation from coal mine methane gas by vacuum pressure swing adsorption”. Chemical Engineering Research and Design, 81(4),474-482. ## Raheem. S. R., 2011, “Remote monitoring of safe and risky regions of toxic gases in underground mines”: a preventive safety measures., In: Postgraduate Diploma thesis report, African Institute for Mathematical Sciences (AIMS), South Africa. ## Stasinska B., Napieraj S., 2009, “Recovery of methane from coal mine ventilation air”, Przem Chem, 88,1121-1124. ## Sun Q., Guo XQ., Liu AX., Dung J., Liu B., Zhang JW., 2012, “Experiment on the Separation of Air Mixed Coal Bed Methane in THF Solution by Hydrate Formation”, Energ Fuel, 26(7), 4507-4513. ## Warmuzinski K., 2008, “Harnessing methane emissions from coal mining”, Process Safety and Environmental Protection 86(5), 315-320. ## Xu C G., Cai J., Li X S., Lv Q N., Chen Z Y., Deng H W., 2012, “Integrated Process Study on Hydrate Based Carbon Dioxide Separation from Integrated Gasification Combined Cycle (IGCC) Synthesis Gas in Scaled Up Equipment”, Energ Fuel, 26(10), 6442–6448. ## Zhong D L., Ding K., Yan J., Yang C., Sun D J., 2013, “Influence of Cyclopentane and SDS on Methane Separation from Coal Mine Gas by Hydrate Crystallization”, Energ Fuel, 27(12), 7252–7258. ## Zhang BY., Wu Q., 2010, “Thermodynamic Promotion of Tetrahydrofuran on Methane Separation from Low Concentration Coal Mine Methane Based on Hydrate”, Energ Fuel, 24(4), 2530–2535. ## Zhong DL., Daraboina N., Englezos P., 2013, “Coal Mine Methane Gas Recovery by Hydrate Formation in a Fixed Bed of Silica Sand Particles”, Energ Fuel, 27(8), 4581–4588. ## Zhong D L., Ding K., Lu Y Y., Yan J., Zhao W L., 2016, “Methane recovery from coal mine gas using hydrate formation in water in oil emulsions”, Applied Energy, 162(15), 1619-1626. ## Zhao J Z., Tian Y Q., Zhao Y S., Cheng W P., 2015,”Experimental Investigation of Effect on Hydrate Formation in Spray Reactor”, Journal of Chemistry, https://doi.org/10.1155/2015/261473 ## http://www.usmra.com/## طاهری، ع؛ سرشکی، ف؛ دولتی ارده جانی، ف؛ میرزا قربانعلی، ع؛ 1396،« مدل‌سازی جریان گاز متان در منافذ زغال سنگ به منظور عملیات گاززدایی و اعتبارسنجی آن، مطالعه موردی: معدن زغال سنگ پروده طبس ایران » پایان‌نامه دکتری##