تاثیر ویژگی‌های خاک در پیش‌بینی نشست ناشی از حفر تونل در مدل‌های رفتاری مختلف در خط A متروی قم

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی معدن دانشکده‌ی مهندسی معدن، نفت و ژئوفیزیک ؛ دانشگاه صنعتی شاهرود

2 دانشیار دانشکده‌ی مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود

چکیده

امروزه برای آنالیز و طراحی تونل‌ها از روش‌های متعددی استفاده می‌شود که معمولا برای تونل‌های شهری که در اعماق کم و در زمین‌های نرم اجرا می‌شوند، بهترین روش عددی است. انتخاب مدل رفتاری مناسب یکی از اساسی‌ترین مراحل در تحلیل‌ عددی است. در اکثر مدل‌سازی‌های عددی حفر تونل از مدل رفتاری موهر کولمب استفاده می‌شود، این مدل رفتاری اغلب منجر به‌ پیش‌بینی نشست کمتر سطح زمین نسبت به نتایج ابزاربندی می‌شود. در این تحقیق به بررسی اثر پارامترهای مختلف خاک در نشست سطح زمین مترو خط A قم در مدل‌های رفتاری سخت‌شونده، موهر کولمب و دراگر پراگر با استفاده از روش تفاضل محدود پرداخته شد. ابتدا مدل‌سازی عددی نشست سطح زمین انجام و نتایج تحلیل با داده‌های ابزاربندی مقایسه شد. در ادامه تاثیر پارامترهای مدول الاستیسیته، زاویه اصطکاک، چسبندگی، ضریب پواسون و وزن مخصوص در مدل‌های رفتاری مختلف بررسی شد. نتایج نشان داد که مدل رفتاری سخت‌شونده و مدل رفتاری دراگر پراگر به ترتیب بیشترین و کمترین تاثیرپذیری را از تغییرات پارامترهای خاک مترو خط A قم دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of different soil parameters in different behavior models on prediction of settlement induced by tunneling (Case study: Qom metro lineA)

نویسندگان [English]

  • Aref Jaberi 1
  • Sh Zare 2
1 Ph. D Student, Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology
2 Shahrood University of Technology
چکیده [English]

Tunneling in urban areas by passing underneath several buildings causes subsidence due to stress relief and development of elastic and plastic deformations. If these subsidences are not controlled, the structures on the ground will be seriously damaged. Nowadays, several methods are used for tunnel analysis and design and for urban tunnels, which excavated in shallow and soft grounds, the best way is using numerical methods. Choosing the Appropriate behavioral model is one of the most basic steps in numerical analysis. tunnel excavation frequently uses the Mohr–Coulomb behavior model in numerical models.
The Mohr-Coulomb elastic-plastic model is one of the most widely used models, used in cases evaluating the hardness of materials, independent of the surface tension. If the Mohr-Coulomb used for modeling of tunnel where in depth tunneling excavation is involved and where an increase in maximum ground surface settlement and decrease in the reliability of stability of tunnels can be seen, which may not be appropriate in some conditions. The more appropriate model should be used to solve this problem, one that can model the hardness of materials based on changes in the level of stress.
In this study, the effect of different soil parameters on the ground surface settlement of Qom metro line A in Hardening Soil, Mohr–Coulomb and Drager Prager behavior models was investigated using the finite difference method. First, modeling of ground surface settlement was performed and the analysis results were compared with instrumentation data. Then, the effect of modulus of elasticity, friction angle, cohesion, Poisson's ratio and specific gravity parameters in different behavior models was investigated. The results of this research indicated that the Hardening Soil behavior model and the Drager Prager behavior model have the most and the least changes from the changes of soil parameters of Qom metro line A, respectively.

کلیدواژه‌ها [English]

  • Ground surface settlement
  • Drager Prager Behavioral Model
  • Hardening Soil
  • Numerical Modeling
  • Qom metro line A
Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. eds. Mechanized tunnelling in urban areas: design methodology and construction control. Taylor & Francis, 2008.## Moeinossadat, S.R. and Ahangari, K. Estimating maximum surface settlement due to EPBM tunneling by Numerical-Intelligent approach–A case study: Tehran subway line 7. Transportation Geotechnics, 18, pp.92-102., 2019.## Peck, R.B. Deep excavations and tunneling in soft ground. Proc. 7th ICSMFE, 1969, pp.225-290, 1969.## Vermeer, P.A. Pile settlements due to tunneling. In Proc. 10th European Conf. on Soil Mechanics and Foundation Engrg., Florence, 1991 (Vol. 2, pp. 869-872). Balkema.## Arioğlu E. Surface movements due to tunnelling activities in urban areas and minimization of building damages [in Turkish]. Short Course, Istanbul Technical University, Mining engineering department; 1992.## Hamza, M., Ata, A. and Roussin, A. Ground movements due to the construction of cut-and-cover structures and slurry shield tunnel of the Cairo Metro. Tunnelling and Underground Space Technology, 14(3), pp.281-289, 1999.## Macklin, S.R. The prediction of volume loss due to tunnelling in overconsolidated clay based on heading geometry and stability number. Ground engineering, 32(4), pp.30-33, 1999.## Klar, A. and Elkayam, I. Direct and relaxation methods for soil-structure interaction due to tunneling. Journal of Zhejiang University-SCIENCE A, 11(1), pp.9-17, 2010.## Yahya, S.M. and Abdullah, R.A. A Review on Methods of Predicting Tunneling Induced Ground Settlements. Electronic Journal of Geotechnical Engineering, 19, pp.5813-5826, 2014.## Zhang, Z., Zhang, M., Jiang, Y., Bai, Q. and Zhao, Q. Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism. Soils and Foundations, 57(2), pp.211-226, 2017.## Wang, H.N., Chen, X.P., Jiang, M.J., Song, F. and Wu, L. The analytical predictions on displacement and stress around shallow tunnels subjected to surcharge loadings. Tunnelling and Underground Space Technology, 71, pp.403-427, 2018.## Loganathan, N. and Poulos, H.G. Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and geoenvironmental engineering, 124(9), pp.846-856, 1998.## Verruijt, A. and Booker, J.R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 48(5), pp.709-713, 1998.## Gonzalez, C. and Sagaseta, C. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), pp.445-468, 2001.## Bobet, A. Analytical solutions for shallow tunnels in saturated ground. Journal of engineering mechanics, 127(12), pp.1258-1266, 2001.## Chi, S.Y., Chern, J.C. and Lin, C.C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model. Tunnelling and Underground Space Technology, 16(3), pp.159-165, 2001.## Chou, W.I. and Bobet, A. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and underground space technology, 17(1), pp.3-19, 2002.## Park, K.H. Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and underground space technology, 20(3), pp.249-261, 2005.## Ocak, I. Environmental effects of tunnel excavation in soft and shallow ground with EPBM: the case of Istanbul. Environmental Earth Sciences, 59(2), pp.347-352, 2009.## Chakeri, H., Hasanpour, R., Hindistan, M.A. and Ünver, B. Analysis of interaction between tunnels in soft ground by 3D numerical modeling. Bulletin of Engineering Geology and the Environment, 70(3), pp.439-448, 2011. ## Ercelebi, S.G., Copur, H. and Ocak, I. Surface settlement predictions for Istanbul Metro tunnels excavated by EPB-TBM. Environmental Earth Sciences, 62(2), pp.357-365, 2011.## Chakeri, H., Ozcelik, Y. and Unver, B. Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunnelling and Underground Space Technology, 36, pp.14-23, 2013.## Chakeri, H. and Ünver, B. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground. Environmental earth sciences, 71(7), pp.3195-3210, 2014.## Sainoki, A., Tabata, S., Mitri, H.S., Fukuda, D. and Kodama, J.I. Time-dependent tunnel deformations in homogeneous and heterogeneous weak rock formations. Computers and Geotechnics, 92, pp.186-200, 2017.## Dalong J, Dajun Y, Xinggao L, Haotian Z. Analysis of the settlement of an existing tunnel induced by shield tunneling underneath Tunnell. Underground Space Technol., 2018.## Ng, C.W.W., Fong, K.Y. and Liu, H.L. The effects of existing horseshoe-shaped tunnel sizes on circular crossing tunnel interactions: Three-dimensional numerical analyses. Tunnelling and Underground Space Technology, 77, pp.68-79, 2018.## Schreter, M., Neuner, M., Unteregger, D. and Hofstetter, G. On the importance of advanced constitutive models in finite element simulations of deep tunnel advance. Tunnelling and Underground Space Technology, 80, pp.103-113, 2018. ## Gulvanessian, H., Calgaro, J.A. and Holický, M. Designer's guide to EN 1990: eurocode: basis of structural design. Thomas Telford, 2002.## Mirhabibi, A., & Soroush, A. Three-dimensional simulation of interaction between surface buildings and twin tunnelling regarding the surface settlement. Geotechnical and Geological Engineering, 38, 5143-5166, 2020.## Ghiasi, V., & Koushki, M. Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Applied Sciences, 2(5), 1-14, 2020.## Fang, Y., Cui, J., Wanatowski, D., Nikitas, N., Yuan, R., & He, Y. (Subsurface settlements of shield tunneling predicted by 2D and 3D constitutive models considering non-coaxiality and soil anisotropy: a case study. Canadian Geotechnical Journal, 2021.## Anato, N. J., Chen, J., Tang, A., & Assogba, O. C. Numerical Investigation of Ground Settlements Induced by the Construction of Nanjing WeiSanLu Tunnel and Parametric Analysis. Arabian Journal for Science and Engineering, 1-17, 2021.## Hejazi, Y., Dias, D. and Kastner, R. Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotechnica, 3(4), pp.251-258, 2008.## Lambrughi, A., Rodríguez, L.M. and Castellanza, R. Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Computers and Geotechnics, 40, pp.97-113, 2012.## Do, N.A., Dias, D., Oreste, P.P. and Djeran-Maigre, I. 3D modelling for mechanized tunnelling in soft ground-Influence of the constitutive model. American journal of applied sciences, 10(8), pp.863-875, 2013.## Vakili, K., Lavasan, A.A., Schanz, T. and Datcheva, M. June. The influence of the soil constitutive model on the numerical assessment of mechanized tunneling. In Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, Delft, The Netherlands (Vol. 18, p. 20), 2014,## Litsas, D., Sitarenios, P. and Kavvadas, M. April. Advanced numerical analyses of EPB tunnelling using critical state plasticity. In ITA-AITES World Tunnel Congress 2018.## Zakhem, A.M. and El Naggar, H. Effect of the constitutive material model employed on predictions of the behaviour of earth pressure balance (EPB) shield-driven tunnels. Transportation Geotechnics, 21, p.100264, 2019.## Nematollahi, M. and Dias, D. Three-dimensional numerical simulation of pile-twin tunnels interaction–Case of the Shiraz subway line. Tunnelling and Underground Space Technology, 86, pp.75-88, 2019.## Eslami, B., Golshani, A. and Arefizadeh, S. Evaluation of Constitutive Models in Prediction of Surface Settlements in Cohesive Soils–A Case Study: Mashhad Metro Line 2. ISSMGE International Journal of Geoengineering Case Histories, 5(3), pp.182-198, 2020.## Shivaei, S., Hataf, N., & Pirastehfar, K. 3D numerical investigation of the coupled interaction behavior between mechanized twin tunnels and groundwater–A case study: Shiraz metro line 2. Tunnelling and Underground Space Technology, 103, 103458, 2020.## ÇELİK, S. Comparison of mohr-coulomb and hardening soil models’ numerical estimation of ground surface settlement caused by tunneling. Iğdır University Journal of the Institute of Science and Technology, pp.96-102, 2017.## 1. Konietzky H, Ismael M. Failure criteria for rocks—an introduction. In: Griebsch A (ed) Introduction into geomechanics. Geotech Inst TU Bergakademie, Freiberg, 2017.## Yang, X., Yuan, H., Wu, J. and Li, S. Elastoplastic analysis of circular tunnel based on Drucker–Prager criterion. Advances in Civil Engineering, 2018.## Sahel Consulting Engineers. Geological and geotechnical studies of Qom city metro, Line A, 2011.## Itasca Consulting Group. FLAC fast Lagrangian analysis of continua, version 5.0. User’s manual, 2012.## Dehghan AN, Bagheri E, Khodaei M, Kalehsar RI. Evaluating the effect of EPBM operational parameters on surface settlement in soft ground. Journal of Geophysics and Engineering, 18(1): pp. 47-61, 2021.## Salimi AR, Esmaeili M, Salehi B. Analysis of a TBM Tunneling Effect on Surface Subsidence: A Case Study from Tehran, Iran. International Journal of Geological and Environmental Engineering, 7(6):332-6, 2013.##