مقایسه نتایج وارون‌سازی داده‌های ژئوالکتریکی و لرزه‌نگاری انکساری به منظور تعیین پتانسیل زمین‌لغزش در محدوده آزادراه تهران- شمال

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه تهران

2 استادیار، دانشکده مهندسی معدن، دانشگاه تهران

3 استاد، دانشکده مهندسی معدن، دانشگاه تهران

4 دانش‌آموخته دکتری، دانشکده مهندسی معدن، دانشگاه تهران

چکیده

محدوده لغزشی مورد بررسی در البرز مرکزی و جنوب راندگی شمال تهران با جهت شیب به سمت شمال قرار گرفته است. وجود این راندگی سبب قرارگیری واحدهای متفاوت توف و کنگلومرا در کنار هم شده است‌. سنجش‌های مقاومت‌ویژه الکتریکی با برداشت 31 سونداژ الکتریکی در محدوده مورد مطالعه بر روی چهار نیمرخ طراحی شده است. بیشینه فرستنده‌های جریان تا عمق 600 متر انجام پذیرفته است. روش برداشت داده‌ها بر اساس آرایه شلومبرژه با فواصل داده‌برداری یکسان است. روش‌های سونداژزنی الکتریکی به علت تطابق خوبی که با اطلاعات زمین‌شناسی، چاه‌پیمایی و نمونه‌های مغزه‌ای نشان می‌دهند مورد استفاده قرار می‌گیرند. بر مبنای مدلسازی ژئوالکتریکی، مقاطع مقاومت‌ویژه الکتریکی سطح زمین لغزش تهیه شد. برای استخراج مدل دقیق‌تری از سطح زمین لغزش، برداشت لرزه‌نگاری انکساری نیز در طول سه نیمرخ و فاصله بین گیرنده‌ها (ژئوفون‌ها) 8 تا 10 متر در نظر گرفته شد که با طراحی 9 شوت (چشمه) لرزه‌ای بر روی هر نیمرخ، زمان رسید اولین پرتوی لرزه‌ای برای مدل‌سازی به کار گرفته شد. بر روی هر نیمرخ فاصله دورافت‌ها از اولین ژئوفون 30 و 50 متر فرض شد. با مدل‌سازی وارون زمان سیر پرتوهای لرزه‌ای بر اساس مسیر حرکت پرتو از چشمه به ایستگاه، مدل سرعت امواج اولیه تصویر شد. به طور ویژه با تمرکز بر مقایسه مدل‌سازی وارون این دو روش ژئوفیزیکی سعی شد که مدل زیرسطحی دقیق سطح زمین‌لغزش احتمالی از روی مدل‌های مقاومت ویژه الکتریکی و سرعت انتشار امواج لرزه‌ای ارایه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing inversion results of geoelectric and seismic refraction data to construct a landslide model, a case study in the area of Tehran-North freeway

نویسندگان [English]

  • Asma Biabani 1
  • Meysam Abedi 2
  • Gholam Hossain Norouzi 3
  • Masoud Mojarab 4
1 School of Mining Engineering, University of Tehran
2 -
3 School of Mining Eng., University of Tehran
4 School of Mining Eng., University of Tehran
چکیده [English]

The sliding area under investigation is located in the central Alborz domain and situated at south of the north drift of Tehran with a slope to the north. The presence of this drift has caused the different units of tuff and conglomerate to be juxtaposed. It should be emphasized that electrical resistivity measurements are deployed along four profiles by collecting 31 electrical soundings in the study area. The maximum current has been transmitted up to a depth of 600 meters. The method of data collection is based on a Schlumberger array with the same station spacing. Electric sounding methods are used because of their good agreement with geological and well log information and core analysis. Upon geoelectric modeling, electrical resistivity cross sections of landslide surface were prepared. In order to extract a more accurate model from the landslide surface, refraction seismic was surveyed along three profiles, where the distance between the receivers (geophones) was 8 to 10 meters. By designing 9 seismic shots along each profile, the first arrival times were used for modeling. On each profile, the distances from the first geophone were assumed to be 30 and 50 meters. By inverse modeling of the first arrival travel time of rays along the path from the source to the geophone, the primary wave velocity model was imaged. In particular, focusing on comparing the inverted models of the geophysical methods, an accurate subsurface model of the possible landslide surface will be provided based on the models of electrical resistivity and seismic propagation velocity.

کلیدواژه‌ها [English]

  • Inversion
  • Geophysics
  • Geoelectric
  • Refraction seismic
  • Landslide
گزارش نهایی مطالعات ژئوفیزیکی به روش ژئوالکتریک و لرزه‌نگاری شکست مرزی، مهندسین مشاور بنیان زمین پایدار، 1397.## Akingboye, A.S. and Ogunyele, A.C., 2019; “Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations” ,Rudarsko-geološko-naftni zbornik ,34(1) ,93-111. ## Baranwal, V.C.; Dalsegg, E.; Dretvik, H.; Rønning, J.S.; Tønnesen, J.F.; and Solberg, I.L.; 2014; “Delineation of Clay Layers in a Landslide Area in Norway Using Frequency Domain Helicopter-borne EM Survey. In Near Surface Geoscience 2014-20th. European Meeting of Environmental and Engineering Geophysics” ,European Association of Geoscientists & Engineers, 1 ,1-5.## Cardarelli, E.; Cercato, M.; Cerreto, A.; and Di Filippo, G.; 2010; “Electrical resistivity and seismic refraction tomography to detect buried cavities” ,Geophysical prospecting ,58(4) ,685-695.## Demirci, İ.; Candansayar, M.E.; Vafidis, A.; and Soupios, P.; 2017; Two dimensional joint inversion of direct current resistivity, radio-magnetotelluric and seismic refraction data: An application from Bafra Plain, Turkey” Journal of Applied Geophysics ,139 ,316-330.## Dey, A.; and Morrison, H.F.; 1979; "Resistivity modeling for arbitrary shaped two-dimensional structures". Geophysical Prospecting, 27, 106-136.## Drahor, M.G.; 2006; “Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey” ,Journal of Applied Geophysics, 59(3), pp.205-223.## Gallardo, L.A; and Meju, M.A.; 2004; “Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints” Journal of Geophysical Research: Solid Earth ,109(B3).## Hack, R.; 2000; “Geophysics for slope stability” ,Surveys in geophysics ,21(4) ,423-448.## Hamdan, H.A.; and Vafidis, A.; 2013; “Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas” ,Environmental Earth Sciences ,68(7) ,1877-1885.## Hellman, K.; Ronczka, M.; Günther, T.; Wennermark, M.; Rücker, C.; and Dahlin, T.; 2017; “structurally coupled inversion of ERT and refraction seismic data combined with cluster-based model integration” ,Journal of Applied Geophysics ,143 ,169-181.## Kieu, D.T.; Pham, N.D.; and Lai, H.P.; 2019; “Integration of geoelectrical and seismic Engineers. ,1,1-5.## Loke, M.H.; and Barker, R.D.; 1996; “Practical techniques for 3D resistivity surveys and data inversion1” ,Geophysical prospecting ,44(3) ,499-523.## Loke, M.H.; 2004; “Tutorial: 2-D and 3-D electrical imaging surveys”.## Lelievre, P.; and Farquharson, C.G.; 2013; "Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes". Geophysical Journal International, 195(1), 330-341.## Lelievre, P.; Farquharson, C.G.; and Hurich, C.A.; 2011; "Inversion of first‐arrival seismic traveltimes without rays, implemented on unstructured grids". Geophysical Journal International, 185(2), 749 - 763.## Lelievre, P.; Farquharson, C.G.; and Hurich, C.A.; 2010; "Computing first‐arrival seismic traveltimes on unstructured 3‐D tetrahedral grids using the Fast Marching Method". Geophysical Journal International, 184(2), 885 - 896.## Marescot, L.; Lopes, S.P.; Rigobert, S.; and Green, A.G.; 2008; “Nonlinear inversion of geoelectric data acquired across 3D objects using a finite-element approach” ,Geophysics ,73(3) ,F121-F133.## Moser, TJ.; 1991; "Shortest path calculation of seismic rays". Geophysics, 56(1), 59–67.## Mostafaei, K.; and Ramazi, H.; 2018; “Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods”. Acta Geophysica ,66(5) ,959-971.## Özyıldırım, Ö.; Demirci, İ.; Gündoğdu, N.Y.; and Candansayar, M.E.; 2020; “Two dimensional joint inversion of direct current resistivity and radiomagnetotelluric data based on unstructured mesh” ,Journal of Applied Geophysics ,172 ,103885.## Palmer, D.; 1980; “The generalized reciprocal method of seismic refraction interpretation. Society of Exploration Geophysicists”.## Pareta, K.; Kumar, J.; and Pareta, U.; 2012; “Landslide hazard zonation using quantitative methods in GIS” ,Int J Geospatial Eng Technol ,1(1) ,1-9.## Patella, D.; 1997; “Introduction to ground surface self‐potential tomography” ,Geophysical Prospecting ,45(4) ,653-681.## Perrone, A.; Vassallo, R.; Lapenna, V.; and Di Maio, C.; 2008; “Pore water pressures and slope stability: a joint geophysical and geotechnical analysis” ,Journal of Geophysics and Engineering ,5(3) ,323-337.## Perrone, A.; Lapenna, V.; and Piscitelli, S.; 2014; “Electrical resistivity tomography technique for landslide investigation: a review” ,Earth-Science Reviews ,135 ,65-82.## Portniaguine, O.N.; and Zhdanov, M.S.; 1999; "Focusing geophysical inversion images". Geophysics, 64, 874–887.## Pullammanappallil, S.K.; and Louie, J.N.; 1994; “A generalized simulated-annealing optimization for inversion of first-arrival times” ,Bulletin of the Seismological Society of America ,84(5) ,1397-1409.## Roy, L.; Sen, M.K.; McIntosh, K.; Stoffa, P.L; and Nakamura, Y.; 2005; “Joint inversion of first arrival seismic travel-time and gravity data” ,Journal of Geophysics and Engineering ,2(3) ,277-289.## Şenkaya, M.; Babacan, A.E.; and Karslı, H.; 2019; “Preliminary results of Integrated Geophysical Surveying in an active landslide in Işıklar-Trabzon, Turkey. In 10th Congress of the Balkan Geophysical Society” ,European Association of Geoscientists & ## Shan, C.; Bastani, M.; Malehmir, A.; Persson, L.; and Engdahl, M.; 2014; Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden. Geophysics ,79(4) ,EN61-EN75.## Shin, C.; Ha, J.; and Jang, S.; 1999; “Refraction tomography by blocky parameterization”.## Tsourles, P.I.; Symanski, J.E.; and Toskas, G.N.; 1999; "The effect of terrain topography on commonly used resistivity arrays". Geophysics, 64, 1357-1363.## Working Party on World Landslide Inventory; 1990; “A suggested method for reporting a landslide” Bulletin IAEG ,41 ,5–12.## Yari, M.; Nabi-Bidhendi, M.; Ghanati, R.; and Shomali, Z.H.; 2021; "Hidden layer imaging using joint inversion of P-wave travel-time and electrical resistivity data". Near Surface Geophysics, 19, 297-313.## Zhao, L.; Zuo, S.; Deng, D.; Han, Z.; and Zhao, B.; 2018; “Development mechanism for the landslide at Xinlu Village, Chongqing, China” ,Landslides ,15(10) ,2075-208.##