تاثیر فعال سازی مکانیکی بر ساختار کانی فلوئورآپاتیت و انحلال عناصر نادر خاکی موجود در کنسانتره فسفات اسفوردی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری فرآوری مواد معدنی، دانشکده فنی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، گروه فرآوری مواد معدنی، دانشکده فنی مهندسی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد گروه فرآوری مواد معدنی، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

کنسانتره فسفات اسفوردی با عیار 2/1 درصد مجموع عناصر نادر خاکی، یکی از منابع غنی عناصر نادر خاکی موجود در کشور است که مهمترین عناصر نادر خاکی موجود در آن عبارتند از سریم (5608 گرم در تن)، لانتانیم (1959) و نئودیمیم (2227). در تحقیق حاضر، انحلال در اسید نیتریک (بدون فعال سازی) و فعال سازی – انحلال در اسید نیتریک بررسی شد. برای بررسی اثر فعال‌سازی مکانیکی بر انحلال عناصر نادر خاکی، از آسیای سیاره ای با گلوله‌های فولادی به قطر 20 میلیمتر، در شرایط نسبت جرم گلوله به پودر، برابر با 2 و 15 و زمان 90 دقیقه در محیط خردایش خشک و اتمسفر هوا استفاده شد. همچنین با توجه به انحلال‌پذیری زیاد فلوئورآپاتیت و کم کانی‌های حاوی عناصر نادر خاکی در اسید نیتریک، از روش انحلال دو مرحله‌ای استفاده شد و پسماند انحلال مرحله اول، که حاوی بیش از 99 درصد عناصر نادر خاکی موجود در نمونه اولیه بود، با نسبت جرم گلوله به پودر 12 فعال سازی و مجددا حل شد. نتایج نشان داد که فعال‌سازی مکانیکی تاثیر مهمی بر انحلال عناصر نادر خاکی از کنسانتره فسفات داشته و انحلال عناصر نادر خاکی را از حدود 1 درصد (بدون فعال سازی) برای عناصر سریم، لانتانیم و نئودیمیم به ترتیب تا 79/35، 61/42 و 34/30 درصد افزایش داد. در اثر فعال‌سازی مکانیکی با نسبت جرم گلوله به پودر 2و 15، میزان آمورف شدگی نمونه به ترتیب برابر با 2/1و 57 درصد اندازه گیری شد. همچنین میزان کرنش شبکه‌ای و اندازه کریستالیت به ترتیب از 0.08 درصد و 225 نانومتر برای نمونه اولیه به 0.09 درصد و 225 نانومتر برای نمونه فعال‌سازی شده با نسبت جرم گلوله به پودر برابر 2 و به 0.63 درصد و 81.8 نانومتر برای نمونه فعال‌سازی شده با نسبت جرم گلوله به پودر برابر 15 تغییر پیدا کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of mechanical activation on the leaching of rare earth elements from Esfordi phosphate concentrate

نویسندگان [English]

  • Hadi Shadi Naghadeh 1
  • Ahmad Khodadadi 2
  • M Abdollahy 2
  • parviz purgharamani 3
1 PhD candidate, Mineral Processing Engineering, Faculty of Enginnering, Tarbiat Modares, Tehran, Iran
2 Professor, Mineral Processing Engineering, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
3 Professor, Mineral Processing Engineering, Mining Engineering Faculty, Sahand University of Technology, Tabriz, Iran
چکیده [English]

The Esfordi phosphate concentrate with total assay of REE equal to 1.2 percent is one of the richest source of rare earth elements in Iran. It contains Ce(5608 ppm), La(1959ppm) and Nd(2227ppm). In this research, the effect of mechanical activation on the leaching of rare earth elements by nitric acid from Esfordi phosphate concentrate was investigated. For the investigation of mechanical activation effect on leaching of REE, a planetary ball mill was used with steel balls of diameter about 20 mm, ball to powder ratio of 15 and 2 and with a retention time of 90 minuts in dry situation and air atmosphere. Because of high and low leachability of fluorapatite and REE minerals by nitric acid, respectively, tow stage leaching methode was used. The first leaching stage residue, that contained about 99 % of REEs in initial phosphate concentrate, was activated mechanically at ball to powder ratio of 12 and then leached. Results showed that the mechanical activation had important influence on leaching of REE by nitric acid from phosphate concentrate and improved the leaching of Ce, La and Nd from about 1% (without mechanical activation) to 35.79, 42.61 and 30.34% , respectively. The amorphization degree increased to 1.2 and 57% after 90 min intensive milling with ball to powder ratio of 2 and 15 to 1, respectively. Also, the crystallite size and microstrain of Fluorapatite differed from 225 nm and 0.08 % for initial sample to 225 nm and 0.09 % and 81.8 nm and 0.63 % for mechanically activated samples with ball to powder ratio of 2 and 15 to 1 respectively.

کلیدواژه‌ها [English]

  • Phosphate concentrate
  • Rare Earth elements
  • Mechanical activation
  • leaching
مراجع
 
 
 
 
 
1.  Binnemans, K., et al., Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013. 51: p. 1-22.
2.  Jha, M.K., et al., Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 2016. 165: p. 2-26.
3.  Han, K.N., et al., Opportunities and challenges for treating rare-earth elements. Geosystem Engineering, 2014. 17(3): p. 178-194.
4.  Binnemans, K., et al., Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 2015. 99: p. 17-38.
5.  Ogata, T., et al., Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Separation and Purification Technology, 2016. 159: p. 157-160.
6.  Sandström, Å. and A. Fredriksson. Apatite for extraction: Leaching of kiirunavaara apatite for simultaneous production of fertilizers and REE. in International Mineral Processing Congress: 24/09/2012-28/09/2012. 2012. The Indian Institute of Metals.
7.فراز سلطانی، 1395، بررسی شرایط ترمودینامیکی انحلال عناصر اصلی نادر خاکی موجود در کنسانتره فسفاتی، رساله دکتری، دانشگاه تربیت مدرس.
8. Wang, L., et al., Recovery of rare earths from wet-process phosphoric acid. Hydrometallurgy, 2010. 101(1): p. 41-47.
9.  Habashi, F. and Y. Xin-bao, Hydrochloric acid route for phosphate rock. Journal of Chemical Technology and Biotechnology, 1987. 38(2): p. 115-26.
10. K.C.Hughes, R. Singh, Hydrometallugy 6 (1980) 25–33.
11. K.A.Gschneidner, in: R. Thompson (Ed.), Speciality Inorganic Chemicals, The Royal Society of Chemistry, London, 1981, pp. 403–443.
12. M. Kizilyalli, A.J.E. Welch, J. Less-Common Met. 127 (1987) 137–145.
 13. A.M. Abdel-Rehim, Hydrometallurgy 67 (2002) 9–17.
14.       Pourghahramani, P., et al., Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses. Powder Technology, 2008. 186(1): p. 9-21.
15.       Baláž, P., Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 2003. 72(1): p. 341-354.
16.       Akhgar, B., et al., Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate. Chemical Engineering Research and Design, 2012. 90(2): p. 220-228.
17.Zdujić, M., et al. "Mechanochemical treatment of α-Fe2O3 powder in air atmosphere." Materials Science and Engineering: A 245.1 (1998): 109-117.
18.Li, Chun, Bin Liang, and HaiYu Wang. "Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite." Hydrometallurgy 91.1-4 (2008): 121-129.
19.Tahmasebi, R., et al. "Effect of iron on mechanical activation and structural evolution of hematite–graphite mixture." Journal of Alloys and Compounds 472.1-2 (2009): 334-342.
 20.Pourghahramani, Parviz, and Eric Forssberg. "Comparative study of microstructural characteristics and stored energy of mechanically activated hematite in different grinding environments." International Journal of Mineral Processing79.2 (2006): 120-139.
21.Pourghahramani, Parviz. Mechanical Activation of hematite using different grinding methods with special focus on structural changes and reactivity. Diss. Luleå tekniska universitet, 2007.
22.Fedorova, O. M., et al. "Structural Properties of Mechanically Activated Rare-Earth Manganites." Chemical and Materials Engineering 2.3 (2014): 58-71.
.23Zhang, J. and F.J. Lincoln, The decomposition of NdPO4 during mechanical milling. Journal of alloys and compounds, 1993. 200(1-2): p. 151-156.
.24Zhang, J.-P. and F.J. Lincoln, The decomposition of monazite by mechanical milling with calcium oxide and calcium chloride. Journal of alloys and compounds, 1994. 205(1-2): p. 69-75.
.25Zhang, Q. and F. Saito, Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment. Hydrometallurgy, 1998. 47(2-3): p. 231-241.
.26Kim, W., et al., Mechanochemical decomposition of monazite to assist the extraction of rare earth elements. Journal of Alloys and compounds, 2009. 486(1): p. 610-614.
27. محمد تقی گل محمدی، 1374، تولید هماتیت از مگنتیت، پایان نامه کارشناسی ارشد، دانشگاه تهران.
 .28N.C.  Halder,  C.N.J.  Wagner,  “Separation of particle  size and lattice strain in integral breadth measurements”, ActaCrystallogr.  1966, 20, 312-313.
29. I. Lucks, P. Lamparter, E.J. Mittemeijer, “An evaluation of methods of diffraction-line broadening analysis applied to ball-milled molybdenum”, J. Appl. Cryst. 2004, 37, 300-311.
30- Jorjani, Esmaeil, Amir Hossein Bagherieh, and Saeed Chehreh Chelgani. "Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions." Korean Journal of Chemical Engineering 28.2 (2011): 557-562.
31- Preston, J. S., et al. "The recovery of rare earth oxides from a phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction." Hydrometallurgy 41.1 (1996): 1-19.
32- Kumari, Archana, et al. "Process development to recover rare earth metals from monazite mineral: A review." Minerals Engineering 79 (2015): 102-115.
33- Judin, V-P., and H-E. Sund. "Recovery of rare earths from secondary sources by solvent extraction." Hydrometallurgy 81(1981): 1981.
34- Wang, Liangshi, et al. "Recovery of rare earths from wet-process phosphoric acid." Hydrometallurgy 101.1-2 (2010): 41-47.
35- Habashi, Fathi. "The recovery of the lanthanides from phosphate rock." Journal of Chemical Technology and Biotechnology 35.1 (1985): 5-14.
36- Kulczycka, Joanna, et al. "Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste–case study of the WIZOW chemical plant (Poland)." Journal of Cleaner Production 113 (2016): 345-354.
37- Krishnamurthy, Nagaiyar, and Chiranjib Kumar Gupta. Extractive metallurgy of rare earths. CRC press, 2004.
38- Soltani, Faraz, et al. "Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate: Part I: Direct baking of the concentrate." Hydrometallurgy (2018).
39- Kuzmin, Vladimir I., et al. "Combined approaches for comprehensive processing of rare earth metal ores." Hydrometallurgy 129 (2012): 1-6.
40- Judin, V-P., and H-E. Sund. "Recovery of rare earths from secondary sources by solvent extraction." Hydrometallurgy 81(1981): 1981.
41- Skorovarov, J. I., et al. "Recovery of rare earth elements from phosphorites in the USSR." Journal of alloys and Compounds180.1-2 (1992): 71-76.
42- Kosynkin, V. D., et al. "Rare earths industry of today in the Commonwealth of Independent States." Journal of alloys and compounds 192.1-2 (1993): 118-120.
43- V. D. Kosynkin, A. K. Selivanovsky, V. M. Smolny, N. A. Tarasova and T. T. Fedulova, Incidental separation of rare earth concentrate in nitric acid and sulphuric acid processing of apatite fertilizer, IFA Technical sub-committee and committee meeting, 15-17 September 1999, Novgrod, Russia.
44- Aly, Monir M., and Nabawia A. Mohammed. "Recovery of lanthanides from Abu Tartur phosphate rock, Egypt." Hydrometallurgy 52.2 (1999): 199-206.
.45Magini, M., et al., Power measurements during mechanical milling—II. The case of “single path cumulative” solid state reaction. Acta materialia, 1998. 46(8): p. 2841-2850.
46.Mio, H., et al., Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Materials Science and Engineering: A, 2002. 332(1): p. 75-80.
47.Mio, H., et al., Optimum revolution and rotational directions and their speeds in planetary ball milling. International Journal of Mineral Processing, 2004. 74: p. S85-S92.
.48Mio, H., J. Kano, and F. Saito, Scale-up method of planetary ball mill. Chemical Engineering Science, 2004. 59(24): p. 5909-5916.
.49Ashrafizadeh, H. and M. Ashrafizaadeh, Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method. Advanced Powder Technology, 2012. 23(6): p. 708-716.