بررسی عوامل مؤثر بر تخریب پذیری توده‌سنگ در استخراج به روش تخریب توده ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه تهران

2 هیئت علمی دانشگاه تهران

3 دانشکده معدن-دانشگاه تهران

چکیده

یک عامل بسیار مهم در معادن تخریب بزرگ، تعیین قابلیت تخریب کانسنگ و سنگ فراگیر است که تخریب‌پذیری آن‌ها شرط اصلی به‌کارگیری این روش است. تخمین و ارزیابی نامناسب این متغیر می‌تواند منجر به ایجاد مشکلاتی در تولید و فرآوری شود. در این مقاله قابلیت تخریب توده‌سنگ با استفاده از نرم­افزار UDEC(نسخه 5) بررسی شده است. با توجه به زیاد بودن عوامل موثر بر قابلیت تخریب، ابتدا از طریق مدلسازی دو بعدی در نرم­افزار UDECو بررسی روند تغییرات حداقل دهانه‌ تخریب بر‌حسب هر پارامتر با ثابت نگه داشتن سایر پارامترها (بررسی تک عاملی)، مهم‌ترین عوامل شامل عمق، شیب دسته درزه‌ها، تعداد دسته درزه‌ها، زاویه اصطکاک سطح درزه و فاصله‌داری درزه‌ها برای بررسی نهایی انتخاب شدند. در مرحله بعد، تغییرات حداقل دهانه‌ تخریب برای هر پارامتر در دامنه‌ تغییرات تعریف شده مطالعه شد. نتایج حاصل از تحلیل حساسیت نشان داد که با افزایش عمق و تعداد دسته درزه وکاهش زاویه اصطکاک سطح درزه و فاصله‌داری درزه‌ها، قابلیت تخریب کاهش و حداقل دهانه‌ تخریب افزایش می‌یابد. بیش‌ترین احتمال تخریب در حالت درزه‌داری با شیب 60 درجه نسبت به افق اتفاق می‌افتد. به ازای سایر مقادیر، قابلیت تخریب کاهش و حداقل دهانه‌ تخریب افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of effective factors on rock mass cavability in block caving method using numerical modeling

نویسندگان [English]

  • Behnam Alipenhani 1
  • Mehdi Yavari 2
  • Ahmad Jafari 3
1 University of Tehran
2
3

کلیدواژه‌ها [English]

  • Cavability
  • minimum failure span
  • Block Caving
  • Numerical Modeling
  • UDEC
منابع
بررسی قابلیت تخریب در « ؛ 1[ علی پنهانی، بهنام؛ 1884 [
روش تخریب بزرگ با استفاده از مدل سازی عددی و
پایان نامه کارشناسی ارشد، دانشکده مهندسی ،» فیزیکی
معدن، دانشگاه تهران.
آماده سازی و بهره برداری « ؛ 2[ علی پنهانی، بهنام؛ 1888 [
سمینار کارشناسی ارشد، دانشکده ،» در روش تخریب بزرگ
مهندسی معدن، دانشگاه تهران.
[3] Mawdesley, C., 2002, “Predicting rock mass cavability in block caving mines”. Ph.D.thesis, University of Queensland.
[4] Lorig, L., 2000, “The Roel of Numerical Modelling in Assessing Caveabilty”, Itasca Consulting Group Inc., Report to the International Caving Study, ICG00-099-3-16.
[5] Sainsbury, B., 2012, “A Model for cave propagation and subsidence assessment in jointed rock masses”, A thesis submitted to University of New South Wales in Fulfilment of requirments for the degree Doctor of Philosophy. pp.16-44.
[6] A. Vakili, B.K. Hebblewhite., 2010, “A new cavability assessment criterion for Longwall Top Coal Caving”, Rock Mechanics & Mining Sciences 48, pp. 1318–1328.
[7] K. Brummer, H. Li., 2005, “The transition from open pit to underground mining : An unusual slope failure mechanism at Palabora”, International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering.
3[ جبین پور، علیرضا؛ 1881 ، "بررسی قابلیت تخریب [
تودهسنگ و عوامل مؤثر بر آن به روش عددی"، پایان نامه
کارشناسی ارشد، گرایش استخراج، دانشکده مهندسی معدن،
دانشگاه تهران.
8[ جبین پور، علیرضا؛ "مدلسازی عددی تاثیر عوامل [
ژئومکانیکی بر تخریب توده سنگ در روش تخریب
بزرگ"، 1885 ، مجموعه مقالات دهمین کنفرانس دانشجویی
مهندسی معدن.
[10]- Keevil, N., 2011, “An Introduction to Block & Panel Caving”, Institute of Mining Engineering, The University of British Columbia.
[11] Rafiee, R., Ataei, M., Khalokakaie, R., Jalali, S. M. E., & Sereshki, F., 2015, “A fuzzy rock engineering system to assess rock mass cavability in block caving mines”, Neural Computing and Applications Journal.
[12]- Laubscher, D H. A., 2000, “Practical Manual on Block caving. Brisbane”, pp. 262-278
[13] Jakubec, J. Esterhuizen. G.., 2007, “Use of the mining rock mass rating (MRMR)”, Proceedings of the International Workshop on Rock Mass Classification in Underground Mining. pp. 73-78
[14] Laubscher, D H. Jakubec. J.., 2001, “The MRMR Rock Mass Classification for Jointed Rock Masses”, Underground mining methods: engineering fundamentals and international case studies., pp. 475-481.
[15] Brown, E T., 2003, “Block Caving Geo mechanics”. The International Caving Study I 1997-2000, JKMRC Monograph Series in Mining and Mineral Processing 3, University of Queensland.
[16] Rafiee, R. Ataei, M. Khalokakaie, R. Jalali, S M E. Sereshki, F., 2014, “Determination and Assessment of Parameters Influencing Rock Mass Cavability in Block Caving Mines Using the Probabilistic Rock Engineering System”, Rock Mech Rock Eng 48, pp. 1207–1220.
[17] Charles A. Brannon, Gordon K. Carlson, and Timothy P. Casten., 2011, “Block Caving & Cave Mining”. 3nd Edition, SME Mining Engineering Handbook, Chapter 13.10,. pp. 1437-1450.
[18] Tollenaar, R N., 2008, “Characterization of Discrete Fracture Networks and their Influence on Cavability and Fragmentation”, Faculty of Mining Engineering. University of British
بهنام علی پنهانی 1، مهدی یاوری شهرضا 2، احمد جعفری نشریه علمی_پژوهشی مهندسی معدن
Columbia, Canada,. Master of Applied Science thesis.
[19] Itasca Consulting Group., 2000, “Universal Distinct Element Code User’s Guide ".
[20] Gilbride, J. Free, K. S. and Kehrman, R, 2005, “Modeling Block Cave Subsidence at the Molycorp”, Inc., Questa Mine, Alaska Rocks 2005, The 40th U.S. Symposium on Rock Mechanics (USRMS), June 25 - 29, 2005, Anchorage, AK.
[21] Sharrock, G., Vakili, A., Duplancic, P. and Hastings, N, 2011, “Numerical analysis of subsidence for Perserverence Deeps Block Cave in Continuum and Distinct Element Numerical Modelling in Geomechanics”, Sainsbury, Hart, Detournay and Nelson (eds.), Paper 06-03, Itasca International Inc, Minneapolis, ISBN 978-0-
9767577-2-6.
[22] Vyazmensky, A Stead, D.Elmo, D., 2010, “Role of Rock Mass Fabric and Faulting in the Development of Block Caving Induced Surface Subsidence", Rock Mechanics Rock Eng, 43:533–556.
[23] www.academia.edu/11169854/ “Properties of Rock Materials Chapter 4”.
[24] Bieniawski, Z. T., 1976, “Rock mass classification in rock engineering. In: Exploration for Rock Engineering”, Cape Town, PP 97-106.
[25] Barton, N.R., 1974, “A review of the shear strength of filled discontinuities in rock”. Norwegian Geotech. Inst. Publ. No. 105. Oslo: Norwegian Geotech. Inst.
[26] Ivars, D M. Pierce. M E. Darcel, C. Reyes-Montes, J. Potyondy, D O. Young, R P. Cundall, P A., 2011, “The synthetic rockmass approach for jointed rockmass modelling”, International Journal of Rock Mechanics & Mining Sciences. pp. 219–244.
[27] Moussaei, N. Sharifzadeh. M. Sahriar, K. Khosravi, M H., 2015, “Evaluation of tunnel instability in layered structures using physical modeling”, Promoting Tunneling in SEE Region, ITA.
[28] Brady, BB.H.G. and Brown, E.T., 2005, “Rock Mechanics For underground mining”,
Springer; 4th edition. Dordrecht, London: Kluwer Academic Publishers, Chapter 1, pp. 13-15.
1 Lorig
2 Sainsbury
8 Vakili
4 Li
5 Brummer
6 Palabora
7 Insitu Rock Mass Rating
3 Mining rock mass rating
Structural domains
11 Structural domains
11 Minor structures
12 Cap Rock
18 Abutment Pressure
14 Caving rate
15 Air blast
16 Gilbride
17 Sharrock
13 Vyazmensky