تاثیر نرخ تزریق سیال در شکست هیدرولیکی سنگ‌های آهکی: مطالعه آزمایشگاهی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 پژوهشگاه صنعت نفت

10.22034/ijme.2020.121434.1783

چکیده

شکست هیدرولیکی مبتنی بر استفاده از سیال پایه آبی گوارگام با ویسکوزیته مناسب، به دلیل مزایای منحصر به فرد آن مانند هزینه‌های ارزان و ظرفیت حمل پروپانت، به عنوان یک راه‌حل مناسب برای استخراج نفت و گاز طبیعی از مخازن شناخته شده است. با این وجود، عدم آگاهی از شکستگی‌های این مخازن، استفاده از آن را در شرایط عملیاتی به چالش کشیده است. بنابراین، هدف از این مطالعه بررسی تأثیر نرخ تزریق سیال در فشار شکست و هندسه شکستگی‌های ایجاد شده است. برای دست‌یابی به این اهداف، یک سری آزمایش شکست هیدرولیکی بر روی نمونه سنگ‌های آهکی، با استفاده از سیال پایه آبی گوارگام انجام شد. به منظور بررسی تأثیر نرخ تزرق سیال، فناوری سی‌تی اسکن نیز برای توصیف پارامترهای هندسی شکستگی به کار گرفته شد. نتایج آزمایش‌ها نشان می‌دهد که با افزایش نرخ جریان سیال تزریق شده از 1 به 6 میلی‌لیتر در دقیقه، فشار شکست و بازشدگی شکستگی افزایش می‌یابد. با افزایش حجم سیال مصرفی، زمان شکست کاهش پیدا می‌کند. یافته‌های این مطالعه نشان می‌دهد که نرخ جریان پایین گوارگام می‌تواند یک شبکه شکستگی به هم پیوسته بهتری نسبت به نرخ جریان بالاتر ایجاد کند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of fluid injection rate on hydraulic fracturing of limestone rocks: an experimental study

نویسندگان [English]

  • Abolfazl Haftabadi 1
  • Sh Zare 1
  • Hamid Soltanian 2
  • Yaser Pourmazaheri 2
1 Shahrood University of Technology
2 Research Institute of Petroleum Industry
چکیده [English]

Hydraulic fracturing based on the use of guar gum water-base fluid with appropriate viscosity has been recognized as a viable solution for extracting oil and natural gas from the reservoir due to its unique benefits such as low cost and proppant carrying capacity. However, the lack of knowledge of reservoirs fractures has challenged field applications. Therefore, the purpose of this study was to investigate the effect of fluid injection rate on fracture pressure and geometry of fractures. To achieve this goal, a series of hydraulic fracturing experiments were performed on limestone rock samples using a guar gum water- base fluid. To investigate the effect of fluid injection rate, CT scan technology was also used to describe the geometric parameters of the fracture. The results of experiments show that with increasing fluid flow rate injected from 1 to 6 ml/min, breakdown pressure and fracture opening increase. As the volume of consumed fluid increases the breakdown time decreases. The findings of this study reveal that low guar gum-flow rates can create a better inter- connected fracture network than higher flow rates.

کلیدواژه‌ها [English]

  • hydraulic fracturing
  • guar gum fluid
  • breakdown pressure
  • injection rate
  • CT scaning
مراجع
[1] Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A., 2015. “A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)”. Renew. Sustain. Energy Rev. 43, 843–862.
[2] Bilgen, S., 2014. “Structure and environmental impact of global energy consumption”. Renew. Sustain. Energy Rev. 38, 890–902
[3] Wang, Q., Chen, X., Jha, A.N., Rogers, H., 2014. “Natural gas from shale formation – theevolution, evidences and challenges of shale gas revolution in United States”. Renew. Sustain. Energy Rev. 30, 1–28.
[4] Hendry, M.J., Schmeling, E.E., Barbour, S.L., Huang, M., Mundle, S.O., 2017. “Fate and transport of shale-derived, biogenic methane”. Sci. Rep. 7.
[5] Wu, Y.-S., Li, J., Ding, D., Wang, C., Di, Y., 2014. “A generalized framework model for the simulation of gas production in unconventional gas reservoirs”. SPE J. 845–857.
[6] Wanniarachchi, W.A.M., Ranjith, P.G., Perera, M.S.A., Lashin, A., AL Arifi, N., Li, J.C., 2015. “Current opinions on foam-based hydro-fracturing in deep geological reservoirs”. Geomech. Geophys. Geo-Energy and Geo-Resources 1, 121–134.
[7] Zoback, M. D., Rummel, F., Jung, R., & Raleigh, C. B. (1977, March). “Laboratory hydraulic fracturing experiments in intact and pre-fractured rock”. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 14, No. 2, pp. 49-58). Pergamon.
[8] Ito, T., & Hayashi, K. (1991, July). “Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements”. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 28, No. 4, pp. 285-293). Pergamon.
[9] Ranjith, P. G., Wanniarachchi, W. A. M., Perera, M. S. A., & Rathnaweera, T. D. (2018). “Investigation of the effect of foam flow rate on foam-based hydraulic fracturing of shale reservoir rocks with natural fractures: An experimental study”. Journal of Petroleum Science and Engineering, 169, 518-531.
[10] Zhang, Y., He, J., Li, X., & Lin, C. (2019). “Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects”. Journal of Petroleum Science and Engineering, 173, 932-940.
[11] Ha, S. J., Choo, J., & Yun, T. S. (2018). “Liquid CO2 Fracturing: Effect of Fluid Permeation on the Breakdown Pressure and Cracking Behavior”. Rock Mechanics and Rock Engineering, 51(11), 3407-3420.
[12] Beugelsdijk, L. J. L., De Pater, C. J., & Sato, K. (2000, January). “Experimental hydraulic fracture propagation in a multi-fractured medium. In SPE Asia Pacific conference on integrated modelling for asset management”. Society of Petroleum Engineers.
[13] Weijers, L. (1995). “The near-wellbore geometry of hydraulic fractures initiated from horizontal and deviated wells”.
[14] Hou, P., Gao, F., Gao, Y., Yang, Y., & Cai, C. (2018). “Changes in breakdown pressure and fracture morphology of sandstone induced by nitrogen gas fracturing with different pore pressure distributions”. International Journal of Rock Mechanics and Mining Sciences, 109, 84-90.
[15] Feng, Y., & Gray, K. E. (2017, August). “Modeling near-wellbore hydraulic fracture complexity using coupled pore pressure extended finite element method”. In 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association.
[16] Gil, I., Nagel, N., Sanchez-Nagel, M., & Damjanac, B. (2011, January). “The effect of operational parameters on hydraulic fracture propagation in naturally fractured reservoirs-getting control of the fracture optimization process”. In 45th US Rock Mechanics/ Geomechanics Symposium. American Rock Mechanics Association.
[17] Nagel, N. B., Gil, I., Sanchez-Nagel, M., & Damjanac, B. (2011, January). “Simulating hydraulic fracturing in real fractured rocks-overcjavascript: Iterm oming the limits of pseudo3D models”. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
[18] Kresse, O., Weng, X., Gu, H., & Wu, R. (2013). “Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations”. Rock mechanics and rock engineering, 46(3), 555-568.
[19] Haddad, M., & Sepehrnoori, K. (2014, August). “Simulation of multiple-stage fracturing in quasibrittle shale formations using pore pressure cohesive zone model”. In Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014 (pp. 1777-1792). Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
[20] Yao, Y., Gosavi, S. V., Searles, K. H., & Ellison, T. K. (2010, January). “Cohesive fracture mechanics based analysis to model ductile rock fracture”. In 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association.
[21] Mohammadnejad, T., & Khoei, A. R. (2013). “An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model”. Finite Elements in Analysis and Design, 73, 77-95.
[22] Shin, D. H. (2013). “Simultaneous propagation of multiple fractures in a horizontal well”. Ph.D.thesis,  University of Texas at Austin.
[23] Nolte, K. G., & Economides, M. J. (Eds.). (2000). “Reservoir stimulation”. Chichester, NY: John Wiley & Sons.
[24] Haimson, B. C. (1989). “Standard test method for determination of the in-situ stress in rock using the hydraulic fracturing method”. Annual Book of ASTM Standards, 4, 851-856.
[25] Ishida, T., 2001. “Acoustic emission monitoring of hydraulic fracturing in laboratory and field”. Construct. Build. Mater. 15, 283–295.
[26] Wang, Y., Li, X., Tang, C., 2016. “Effect of injection rate on hydraulic fracturing in naturally fractured shale formations: a numerical study”. Environ. Earth Sci. 75, 935.