پیش‌بینی نرخ نفوذ ماشین تونلزنی با استفاده از دسته بندی گروهی داده‌های شبکه عصبی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی معدن، دانشکده مهندسی، دانشگاه کردستان، سنندج

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه کردستان، سنندج

3 دانشجوی کارشناسی ارشد مکانیک سنگ، دانشکده مهندسی معدن، دانشکده فنی، دانشگاه تهران

چکیده

پیش‌بینی نرخ نفوذ ماشین حفر تونل (TBM) در سنگ‌های سخت از مهم‌ترین عوامل تاثیرگذار در برآورد هزینه و زمان اتمام حفاری تونل است. در این پژوهش از شبکه عصبی دسته‌بندی گروهی داده‌ها (GMDH) برای پیش‌بینی نرخ نفوذ ماشین حفاری در قطعه جنوبی تونل انتقال آب کرمان استفاده شده است. پس از تشکیل پایگاه داده با استفاده از اطلاعات ژئومکانیکی توده‌سنگ و داده‌های عملکرد واقعی ماشین حفاری، ابتدا با انجام رگرسیون چندمتغیره خطی و غیرخطی همبستگی بین ده پارامتر مختلف بررسی شده و روابطی تجربی برای پیش‌بینی نرخ نفوذ ماشین توسعه داده شد. برای طراحی بهینه ساختار شبکه عصبی از الگوریتم ژنتیک چند هدفی در قالب بهینه‌سازی دو هدفی استفاده شد به طوری که داده‌های ورودی به دو دسته آموزش (70 درصد داده‌ها) و پیش‌بینی (30 درصد داده‌ها) تقسیم و خطای آموزش و خطای پیش‌بینی نیز به عنوان دو تابع هدف انتخاب شد. پس از تعیین ساختار بهینه شبکه، تابع نرخ نفوذ ماشین حفاری به صورت چند جمله‌ای‌های چند لایه بر حسب چهار پارامتر با قویترین همبستگی با نرخ نفوذ یعنی مقاومت فشاری توده‌سنگ، محتوای کوارتز، زاویه صفحات ناپیوستگی با راستای تونل و نیروی قائم اعمالی بر هر تیغه برش ارایه شد. در این مقاله از پارامتر ترکیبی مقاومت فشاری توده‌سنگ استفاده شد که ضمن کاهش تعداد پارامترهای دخیل در مدل‌، منجر به ساده‌تر شدن آن شد. مقایسه مقادیر خروجی مدل پیش‌بینی نرخ نفوذ با مقادیر اندازه‌گیری شده ضریب همبستگی بالایی برابر 81/0 بدست می‌دهد (ضریب ضریب همبستگی در مدل رگرسیون غیرخطی 6/0 است) که نشان‌دهنده قابلیت پیش‌بینی بسیار خوب این شبکه است. بر خلاف سایر شبکه‌های عصبی که خروجی آن‌ها اغلب به صورت جعبه سیاه است، در مدل پیشنهادی خروجی نهایی به صورت تابع بازگشتی صریح بین ورودی‌ها و خروجی ارایه شد. این ویژگی منحصر به فرد شبکه عصبی GMDH امکان استفاده مستقیم از روابط ارایه شده در سایر پروژه‌ها و یا تحقیقات آینده را فراهم می‌سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of tunnel boring machine penetration using Group Method of Data Handling (GMDH) neural network

نویسندگان [English]

  • Alan Showkati 1
  • Bahman Ahmadi 2
  • Kiarash Nasri 3
1 Assistant Professor, Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Department of Mechanical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
3 M.Sc. Student, Department of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Predicting penetration rate of tunnel boring machines (TBM) is a decisive factor in scheduling and budgeting of tunnelling projects. This paper is aimed at predicting the TBM penetration rate (ROP) in the southern lot of Kerman water conveyance tunnel by means of Group method of Data Handling (GMDH) neural network. Having compiled the database using the geomechanical data of rock mass and machine performance data, correlations between ten various parameters were explored and two linear and nonlinear multivariate regression equations for the penetration rate were set up. Multi-objective Genetic Algorithm in the form of bi-objective optimization was applied for designing the optimal structure of the network and the dataset was randomly divided into training subset (70% of the total data) and test subset (the remaining 30%) as two objective functions. A multi-layered polynomial penetration rate function in terms of the parameters having the strongest correlation with ROP, i.e. compressive strength of the rock mass, quartz content, the angle between plane of weakness and TBM-driven direction, and the average force acting on the single cutter was obtained. Application of the rock mass compressive strength led to reducing the number of involving parameters and making the prediction model simpler. The comparison of the observed and predicted values showed high determination coefficient (R2) of 0.81 (R2=0.6 for nonlinear multivariate regression) which reveals high prediction capability of the proposed GMDH model. Unlike other neural network prediction models which produce their outputs as a “black box”, the suggested ROP GMDH model was expressed as a recurrent polynomial function in terms of the inputs. This outstanding feature of the GMDH model enables the proposed prediction model to be used in other projects as well as future research.

کلیدواژه‌ها [English]

  • Group Method of Data Handing (GMDH)
  • Rate of Penetration
  • Prediction model
  • Neural Network
  • Kerman Water Conveyance Tunnel
H.P. Sanio, 1985; “Prediction of the performance of disc cutters in anisotropic rock”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 22 (3), pp. 153–161.## O.T. Blindheim, 1979; “Boreability predictions for tunneling Ph.D. Thesis”, Department of Geological Engineering. The Norwegian Institute of Technology. ## J. Rostami, 1997; “Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure Ph.D. thesis”, Colorado School of Mines, Golden, Colorado, USA. ## A. Bruland, 1998; “Hard rock tunnel boring Ph.D. Thesis”, Norwegian University of Science and Technology, Trondheim. ## N. Barton, 2000; “TBM Tunnelling in Jointed and Faulted Rock”, Balkema, Rotterdam. ## J. Hassanpour; J. Rostami; M. Khamehchiyan, A. Bruland, H.R. Tavakoli, 2010; “TBM performance analysis in pyroclastic rocks: a case history of karaj water conveyance tunnel”, Rock Mech. Rock Eng., vol. 43 (4), pp. 427–445. ## J. Khademi Hamidi; K. Shahriar; B. Rezai, J. Rostami, 2010; “Performance prediction of hard rock TBM using rock mass rating (RMR) system”, Tunn. Undergr. Space Technol., vol. 25(4), pp. 333–345. ## E. Farrokh; J. Rostami; C. Laughton, 2012; “Study of various models for estimation of penetration rate of hard rock TBMs”, Tunn. Undergr. Space Technol., vol. 30, pp.110–123. ## A. Benato; P. Oreste, 2015; “Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics”, Int. J. Rock Mech. Min. Sci., vol. 74, pp. 119–127. ## O. Frough; S.R. Torabi; S. Yagiz, 2015; “Application of RMR for estimating rock-mass-related TBM utilization and performance parameters: a case study”, Rock Mech. Rock Eng., vol. 48 (3), pp. 1305–1312. ## A. Salimi; J. Rostami; C. Moormann; A. Delisio, 2016; “Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs”, Tunn. Undergr. Space Technol., vol. 58, pp. 236–246. ## G. Armettia; M.R. Migliazzab; F. Ferraric; A. Bertid; P. Padovesed, 2018; “Geological and mechanical rock mass conditions for TBM performance prediction. The case of “La Maddalena” exploratory tunnel”, Tunn. Undergr. Space Technol., vol. 77, pp. 115–126. ## M. Entacher; J. Rostami, 2019; “TBM performance prediction model with a linear base function and adjustment factors obtained from rock cutting and indentation tests”, Tunnell. Undergr. Space Technol., vol. 93, no.103085. ## H. Xu; Q. Gong ; J. Lu; L. Yin; F. Yang, 2021; “Setting up simple estimating equations of TBM penetration rate using rock mass classification parameters”, Tunnell. Undergr. Space Technol., vol. 115, no. 104065## M. Alvarez Grima; P.A. Bruines; P.N.W. Verhoef, 2000; “Modeling tunnel boring machine performance by neuro-fuzzy methods”, Tunnell. Undergr. Space Technol., vol. 15 (3), pp. 259–269. ## A.G. Benardos; D.C. Kaliampakos, 2004; “Modelling TBM performance with artificial neural networks”, Tunnell. Undergr. Space Technol., vol. 19, pp. 597–605. ## S. Yagiz; C. Gokceoglu; E. Sezer; S. Iplikci, 2009; “Application of two nonlinear prediction tools to the estimation of tunnel boring machine performance”, Eng. Appl. Artif. Intell., vol. 22, pp. 808–814. ## E. Ghasemi E; S. Yagiz; M. Ataei, 2014; “Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic”, Bull. Eng. Geol. Environ., vol. 73, pp. 23–35. ## S. Mahdevari S; K. Shahriar; S. Yagiz; M.A. Shirazi, 2014; “A support vector regression model for predicting tunnel boring machine penetration rates”, Int. J. Rock Mech. Min. Sci., vol. 72, pp. 214–229. ## S. Yagiz ; H. Karahan, 2015; “Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass”, Int. J. Rock Mech. Min. Sci., vol. 80, pp. 308–315. ## D.J. Armaghani; E.T. Mohamad; M.S. Narayanasamy et al., 2017; “Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition”, Tunn. Undergr. Sp. Technol., vol. 63, pp. 29–43. ## J. Zhou; B. Yazdani Bejarbaneh; D.J. Armaghani; M.M. Tahir, 2020; “Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques”, Bull. Eng. Geol. Environ., vol. 79, pp. 2069–2084. ## F. Shangxina; C. Zuyub; L. Huac et al., 2021; “Tunnel boring machines (TBM) performance prediction: A case study using big data and deep learning”, Tunn. Undergr. Sp. Technol., vol. 110, no. 103636. ## V.T. Minh; D. Katushin; M. Antonov; R. Veinthal, 2017; “Regression models and fuzzy logic prediction of TBM penetration rate”, Open Eng., vol. 7 (1), pp. 60–68. ## S. Yagiz; H. Karahan, 2011; “Prediction of hard rock TBM penetration rate using particle swarm optimization”, Int. J. Rock Mech. Min. Sci., vol. 48, pp. 427–433. ## E. Sfidari et al., 2018; “Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin”, Geopersia, vol. 8(1), pp. 43-60. ## A. Jamali et al., 2015; “Reliability-based optimal controller design for systems with probabilistic uncertain parameters using fuzzy limit state function”, Journal of Vibration and Control, vol. 21(7), pp. 1413-1429##. A. Jamali et al., 2013; “Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA)”, Engineering Applications of Artificial Intelligence, vol. 26(2), pp. 714-723##. B. Ahmadi; N. Nariman-zadeh; A. Jamali, 2017; “Path synthesis of four-bar mechanisms using synergy of polynomial neural network and Stackelberg game theory”, Engineering Optimization, vol. 49(6), pp. 932-947. ## M. Parsa; E.J.M. Carranza, B. Ahmadi, 2022; “Deep GMDH Neural Networks for Predictive Mapping of Mineral Prospectivity in Terrains Hosting Few but Large Mineral Deposits”, Natural Resources Research, vol. 31(1), pp. 37-50. ## S.J. Farlow, 1984; “The GMDH algorithm”, Self-organizing methods in modeling” GMDH type algorithms, vol. 54, p. 350. ## N. Nariman-Zadeh, et al., 2005; “Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process”, Journal of Materials Processing Technology, vol. 164-165, pp. 1561-1571. ## N. Nariman-Zadeh; A. Darvizeh; G. Ahmad-Zadeh, 2003; “Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217(6): pp. 779-790. ## مهندسان مشاور ساحل امید ایرانیان- زیستاب. 1396 . گزارش زمین‌شناسی مهندسی تونل انتقال آب کرمان. ## پورهاشمی، سیدمهدی؛ آهنگری، کاوه؛ حسن‌پور، جعفر، افتخاری، سید مصلح؛ 1400؛ «تحلیل نرخ نفوذ ماشین حفار تمام مقطع در شرایط سنگسایی»، نشریه علمی مهندسی معدن، دوره 16، شماره 52 ، صفحه 78 تا 88. A. Bruland, 1999; “Hard Rock Tunnel Boring: Advance Rate and Cutter Wear”, Trondheim, Norway: Norwegian Institute of Technology (NTNU). ## A. Salimi; J. Rostami; C. Moormann; A. Delisio, 2019; “Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms”, Tunn. Undergr. Space Technol., vol. 92, 103046. ## E. Hoek; E.T. Brown, 2019; “The Hoek-Brown failure criterion and GSI-2018 edition “, J. Rock Mech. Geotech. Eng., vol. 11(3), pp. 445-463. ##