پهنه‌بندی برخی از عناصر سمی در انباشتگاه‌ باطله شرقی معدن سرب و روی انگوران با رویکرد زمین‌آماری

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشگاه تهران

2 کارمند ایمدرو

3 فارغ التحصیل دانشگاه تهران

4 استاد مهندسی معدن (فرآوری مواد معدنی)، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر

5 استادیار مهندسی معدن (فرآوری مواد معدنی)، دانشگاه آزاد اسلامی- واحد تهران جنوب

چکیده

تعیین توزیع فضایی عناصر سمی در محل دپوی باطله های معدن نیازمند ارزیابی خطرات وارائه راهکارهای زیست محیطی می باشد. برای رسیدن به این هدف، از دمپ باطله شرقی معدن انگوران به مساحت 300000 مترمربع نمونه برداری انجام شد. برای این منظور، 38 نمونه ی خاک جهت مطالعه، آنالیز و مدل سازی انتخاب گردید. مطالعات آماری مجموعه داده ها برای برخی از عناصر سمی شامل As،Cd ،Cu وCo صورت پذیرفت. از نظر زمین آماری، جهت حذف داده های خارج از ردیف از روش نمودار Q-Q plot استفاده شد که این امر افزایش ضریب همبستگی نتایج را به همراه داشت. در مرحله بعد، مطالعات زمین آماری از جمله پارامتر های واریوگرام شامل دامنه، سقف، اثر قطعه ای و آزیموت برای عناصر سمی مورد مطالعه محاسبه و توزیع پراکندگی این عناصر بر اساس روش شبیه سازی گوسی متوالی (SGS) مدل سازی شد که نتایج حاصل نشان دهنده مقادیر بالای As در نواحی جنوب، غرب و شمال دمپ باطله می باشد. بعلاوه، مقادیر بالای Cd در نواحی جنوب غربی و شمال شرقی دمپ باطله تعیین گردید. نتایج نشان داد که مقادیر بالای Co و Cuدر نواحی غرب، جنوب و شمال دمپ باطله تجمع پیدا کرده اند. به منظور اعتبارسنجی واریوگرام ها از روش اعتبارسنجی متقابل استفاده شد که یک روش اساسی برای مقایسه تاثیر مدل واریوگرام های مختلف و روش های شبیه سازی در نتایج درونیابی می باشد. ضریب همبستگی برای عناصر As ،Cd ،Cu وCo به ترتیب 885/0، 8056/0، 6867/0 و 9792/0 محاسبه گردید که نشان دهنده اعتبار بالای نتایج شبیه سازی می باشد. نتایج حاصل از مطالعه حاضر می تواند در ارائه راهکارهای مدیریت زیست محیطی باطله های معدنی برای کنترل آلاینده های سمی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The spatial modeling of hazardous elements in one of the Angouran mine waste dumps using a geostatistical approach

نویسندگان [English]

  • Abbas Sharafi 2
  • Hamed Beigi 3
  • Bahram Rezaei 4
  • Jafar Sargheini 5
2 Emidro
3 University of Tehran
4 Amir Kabir University of Technology
5 Azad University, South Tehran Branch
چکیده [English]

Mining operations and waste resulting from it can be considered as one of the most important sources of hazardous elements in the environment. Identification of the spatial distribution of toxic elements in the mine waste dump systems requires the assessment of environmental hazards and strategies. To achieve the goal, the sampling was conducted on a waste dump located in the east of Angouran mine at an area of 300,000 square meters. For this purpose, 38 soil samples were selected for study and modeling. Statistical studies of the data set for As, Cd, Cu and Co elements were performed. In addition, Q-Q plot was used to remove outlier from the data, which resulted in an increase in the correlation coefficient of the results. In the next step, statistical analyses were performed to determine variogram parameters for the studied elements and the distribution of toxic elements was modeled on the basis of sequential Gaussian simulation (SGS) method, which results in high concentrations As in the south, west, and north of the dump. Elevated concentration of Cd can be seen in the southwest and northeast parts of the dump. Also, high concentrations of Co and Cu accumulate in the western, southern and northern parts of the dump. In order to validate variograms, cross-validation method was employed which is a fundamental method for comparing the effect of different variogram models and simulation methods on interpolation results. Correlation coefficients for As, Cd, Cu and Co elements were 0.885, 0.8056, 0.6867 and 0.9792, which represent the validity of simulation results.

کلیدواژه‌ها [English]

  • Sequential Gaussian Simulation
  • variogram model
  • Outlier
  • toxic elements
  • waste dump

منابع

  1. Anawar HM (2015), "Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge". J Environ Manage 158:111–121
  2. Goovaerts P (1998), "Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties". Biol Fertil Soils 27:315–334
  3. Jamieson HE, Walker SR, Parsons MB (2015), "Mineralogical characterization of mine waste". Appl Geochem 57:85–105
  4. Komnitsas K, Modis K (2006), "Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics". Sci Total Environ 371:190–196
  5. Marko K, Al-Amri NS, Elfeki AM (2014), "Geostatistical analysis using GIS for mapping groundwater quality, case study in the recharge area of Wadi Usfan, western Saudi Arabia". Arab J Geosci 7:5239–5252
  6. Modis K, Komnitsas K (2008), "Dimensionality of heavy metal distribution in waste disposal sites using nonlinear dynamics". J Hazard Mater 156:285–291
  7. Juang KW, Chen YS, Lee D-Y (2004), ,"Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils". Environ Pollut 127:229–238
  8. Barkouch Y, Pineau A (2016), "Evaluation of the impact of mine activity on surrounding soils of  Draa Lasfar mine in MarrakechMorocco". Afr J Environ Sci Technol 10:44–49
  9. Qu M, Li W, Zhang C (2013), "Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions". Ecol Inform 13:99–10
  10. Van der Perk M et al (2008), "The effect of short-range spatial variability on soil sampling uncertainty". Appl Radiat Isot 66:1582–1587
  11. Cao S, Lu A, Wang J, Huo L (2017), "Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area". Sci Total Environ 580:430–439
  12. Franco C, Soares A, Delgado J (2006), "Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique Geoderma" 136:852–864.
  13. Lin YP, Chang TK, Teng TP (2001), "Characterization of soil lead by comparing sequential Gaussian simulation",simulated annealing simulation and kriging methods". Environ Geol 41:189–199
  14. Fu W, Zhao K, Zhang C, Wu J, Tunney H (2016), "Outlier identification of soil phosphorus and its implication for spatial structure modeling". Precision Agric 17:121–135
  15. Du C, Liu E, Chen N, Wang W, Gui Z, He X (2017), "Factorial kriging analysis and pollution evaluation of potentially toxic elements in soils in a phosphorus-rich area, South Central China". J Geochem Explor 175:138–147
  16. Isaaks EH and Mohan Srivastava R (1988), "Spatial continuity measures for probabilistic and deterministic geostatistics," Math geol", 20: 313-341
  17. Jordanova N, Petrovsky E, Kapicka A, Jordanova D, Petrov P (2017), "Application of magnetic methods for assessment of soil restoration in the vicinity of metallurgical copper-processing plant in Bulgaria". Environ Monit Assess 189:158
  18. Komnitsas K, Guo X, Li D (2010), "Mapping of soil nutrients in an abandoned Chinese coal mine and waste disposal site". Miner Eng 23:627–635
  19. Lin WC, Lin YP, Wang YC (2016), "A decision-making approach for delineating sites which are potentially contaminated by heavy metals via joint simulation". Environ Pollut 211:98–110
  20. Liu G, Niu J, Guo W, Zhao L, Zhang Ch, Wang M, Zhang Zh, Guo G  (2017), "Assessment of terrain factors on the pattern and extent of soil contamination surrounding a chemical industry in Chongqing", Southwest China. CATENA 156:237–243
  21. Martin JAR, Nanos N (2016), "Soil as an archive of coal-fired power plant mercury deposition". J Hazard Mater 308:131–138
  22. Safikhani M, Asghari O, Emery X (2016), "Assessing the accuracy of sequential gaussian simulation through statistical testing". Stoch Environ Res Risk Assess 31:1–11
  23. Sun H, Li J, Mao X (2012), "Heavy metals’ spatial distribution characteristics in a copper mining area of Zhejiang Province". J Geogr Inf Syst 4:46
  24. Ersoy A, Yunsel T, Cetin M (2004), "Characterization of land contaminated by past heavy metal mining using geostatistical methods". Arch Environ Contam Toxicol 46:162–17
  25. Jiang Y, Zhang Y, Wen D, Liang W (2003), "Spatial heterogeneity of exchangeable iron content in cultivated soils of Shenyang suburbs". J Soil Water Conserv 17:119–121
  26. Li X, Yang H, Zhang Ch, Zeng G, Liu Y, Xu W, Wu Y, Lan Sh (2017), "Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China". Chemosphere 170:17–24
  27. Remy N (2005), S-GeMS: "the Stanford geostatistical modeling software: a tool for new algorithms development". In: Geostatistics Banff 2004. Springer, Berlin, pp 865–871
  28. Gilg, H.A., Boni, M., Balassone, G., Allen, C.R., Banks, D., Moore, F. (2006), "Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: Interaction of sedimentary brines with a metamorphic core complex". Miner. Depos. 41, 1–16. doi:10.1007/s00126-005-0035-5
  29. Boni M, Gilg HA, Balassone G, Schneider, J, Allen CR, Moore, F (2007), "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran". Miner. Depos. 42, 799–820. doi:10.1007/s00126-007-0144-4
  30. Boni M, Mondillo, N (2015), "The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores". Ore Geol. Rev. 67: 208–233.
  31. Sharafi A, Doulati Ardejani F, Rezaei B, Sargheini J (2018), "Environmental geochemistry of near-neutral waters and mineralogy of zinc and lead at the Angouran non-sulphide zinc mine, NW Iran". J. Geochem Explor 186, 77-93.
  32. Daliran, F., Borg, G., (2003), "A preliminary appraisal of the non-sulphide zinc deposit of
    Angouran, North-West Iran". Miner. Explor. Sustain. Dev. 65–68.
  33. Wahsha M, Nadimi-Goki M, Bini C (2016), "Land contamination by toxic elements in abandoned mine areas in Italy". J Soils Sediments 16:1300–1305
  34. شرفی، عباس؛  «مدلسازی طرح سیستم تصفیه غیرفعال پساب»، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تز ارشد،1397
    1. Liu Y, Lv J, Zhang B, Bi J (2013), "Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China". Sci Total Environ 450:108–119
    2. Goovaerts P (1999), "Geostatistics in soil science," state-of-the-art and perspectives. Geoderma 89:1–45
    3. M. Qu, W. Li, and C. Zhang, (2013), "Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions". Ecol Inform 13: 99-105
    4. Gama Xavier A. (1990), "Environmental biochemical aspects of heavy metals in acid mine water". Int J Mine Water 9 (1-4): 43-55
    5. Finzgar N, Jez E, Voglar D, Lestan D (2014), "Spatial distribution of metal contamination before and after remediation in the Meza Valley, Slovenia". Geoderma s217-218: 135-143
    6. Dao L, Morrison L, Kiely G, Zhang C (2013), "Spatial distribution of potentially bioavailable metals in surface soils of a contaminated sports ground in Galway", Ireland. Environ Geochem Health 35:227–238
    7. Modis K, Vatalis KI (2014), "Assessing the risk of soil pollution around an industrialized mining region using a geostatistical approach". Soil Sediment Contam 23:63–75
    8. Morrell WJ, Stewart R, Gregg P, Bolan N, Horne D (1996), "An assessment of sulphide oxidation in abandoned base-metal tailings", Te Aroha, New Zealand. Environ Pollut 94:217–225
    9. Marescotti P, Azzali E, Servida D, Carbone C, Grieco G, De Capitani L, Lucchetti G (2010), "Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy)". Environ Earth Sci 61:187–199
    10. Romero A, Gonza ´lez I, Martı ´n JM, Va ´zquez MA, Ortiz P (2015), "Risk assessment of particle dispersion and trace element contamination from mine-waste dumps." Environ Geochem Health 37:273–286
    11. Armstrong M, (1998), "Basic linear geostatistics. Springer", Berlin
    12. Trangmar BB, Yost RS, Uehara G (1986), Application of geostatistics to spatial studies of soil properties. Adv Agron 38:45–94
    13. Atteia O, Dubois J-P, Webster R (1994), "Geostatistical analysis of soil contamination in the Swiss Jura". Environ Pollut 86:315–327
    14. Long XH, Zhao J, Liu ZP, Rengel Z, Liu L, Shao HB, Tao Y (2014), "Applying geostatistics to determine the soil quality improvement by Jerusalem artichoke in coastal saline zone". Ecol Eng 70:319–326
    15. Komnitsas K, Modis K (2009), "Geostatistical risk estimation at waste disposal sites in the presence of hot spots". J Hazard Mater164:1185–1190
    16. Sun B, Zhou S, Zhao Q (2003), "Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China". Geoderma 115:85–99