طراحی و به کارگیری سیستم خبره در ارزیابی بهره‌وری معادن

نوع مقاله: علمی - پژوهشی

نویسندگان

1 گروه استخراج، دانشکده فنی و مهندسی

2 مدیر گروه استخراج معدن دانشگاه تربیت مدرس

3 دانشگاه تربیت مدرس، دانشکده اقتصاد و مدیریت، مدیر گروه مدیریت صنعتی

چکیده

در این تحقیق، یک سیستم خبره مبتنی بر قاعده همراه با یک رابط کاربر گرافیکی برای اندازه‌گیری، ارزیابی و ارائه سیاست بهبود بهره وری در معادن مطابق با چرخه مدیریت بهره‌وری طراحی و پیاده‌سازی شده است. سیستم خبره شامل مجموعه قواعد مرتبط با نحوه محاسبه و تحلیل شکاف بهره وری بوده و موتور استنتاج بر مبنای تحلیل قواعد پیشرو است. سیاست‌های کلان بهبود بر اساس شاخص‌های کمی و کیفی ارائه می‌شود. به‌منظور ارزیابی متغیرهای مؤثر و تعیین اهمیت نسبی این سیاست ها، یک سیستم استنتاج فازی مبتنی بر نظرات خبرگان نیز پیاده‌سازی شده است. برای بررسی کارکرد سیستم، از داده‌های یک مجتمع تولید طلا در یک دوره هشت ساله استفاده‌ و شاخص های مختلف در حوزه های فنی، مالی، منابع انسانی و بازار تدوین و تحلیل شده است. برای شاخص‌های با رشد نامطلوب، هفت سیاست بهبود ارائه شده که بیشترین و کمترین سهم به ترتیب مربوط به سیاست "بهبود فرایند تولید" و "مدیریت منابع انسانی" است. بر اساس ارزیابی 40 مؤلفه کیفی، 21 مورد در وضعیت بهبود سریع قرار گرفت. همچنین پس از اجرای سیستم استنتاج فازی، سیاست "کاهش مصرف انرژی" با اهمیت 56% دارای بیشترین اهمیت به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing and utilizing expert systems for evaluating mining productivity

نویسندگان [English]

  • Hossein Fanoudi 1
  • Ahmad Reza Sayadi 2
  • Ali Rajabzadeh 3
1 Mining Dept., Faculty of Eng.
2 Head of Mine Exploitation of Mining Dept. Tarbiat Modares University
3 Faculty of Management and economics
چکیده [English]

In this research, a rule-based expert system, with a graphical user interface, has been designed and implemented to measure, evaluate and provide a policy of improving mining productivity corresponding to the productivity management cycle. The expert system includes a set of rules related to how to calculate and analyze the productivity gap, and the inference engine is based on the analysis of the leading rules. Major policies are being improved based on quantitative and qualitative indicators. In order to evaluate the effective variables and to determine the relative importance of these policies, a fuzzy inference system based on expert opinions has also been implemented. To evaluate system performance, data from a gold mining complex was used for a period of eight years, and various indicators were developed in technical, financial, human resources and markets. For undesirable growth indicators, seven improvement policies were presented, with the highest and lowest share being related to the policy of "improving the production process" and "human resource management." Based on the evaluation of 40 qualitative components, 21 cases were in a rapid recovery situation. Also, after implementing the fuzzy inference system, the policy of "reducing energy consumption" with the importance of 56% was the most important.

کلیدواژه‌ها [English]

  • productivity
  • Expert system
  • Indicator
  • IPA matrix

منابع

  1. Tilton,. J. E., 2014, “Cyclical and secular determinants of productivity in the copper, aluminum, iron ore, and coalindustries”, Miner. Econ., 27(1): 1–19.
  2. EY Global Mining & Metals Advisory Institute, 2016, “Business risks facing mining and metals”, Available on: http:// EY.com.
  3. Sumanth, D. J., Dedeoglu, M., 1988, “Application of expert systems to productivity measurement in companies / organizations”, Computers & Industrial Engineering, 14(3): 241–249.
  4. Rao. M. P., Miller. D. M., Lin. B., 2005, “PET: An expert system for productivity analysis”, Expert Systems with Applications, 29: 300–309.
  5. Azadeh, A., Fam, I. M., Khoshnoud, M. Nikafrouz, M., 2008, “Design and implementation of a fuzzy expert system for performance assessment of an integrated health, safety, environment (HSE) and ergonomics system: The case of a gas refinery”, Int. Sci.178)22): 4280–4300, (in Persian).
  6. Kaur, E. N., Rekhi, E. N. S., Nayyar, A., 2013. “Review of Expert Systems based on Fuzzy logic“, Int. J. Adv. Res. Comput. Commun. Eng., 2(3):1334-1339.
  7. Muqeem Idrus, B., Keem, S., Khamidi. Y., Zakaria, M. F., Arazi, M.S., 2012, “Estimation of Production rates for Formwork Installation using Fuzzy Expert Systems”, Glob. J. Res. Eng., 12(1)–E.
  8. Chekushina, E. V., Vorobev. A. E., Chekushina T. V., 2013, “Use of expert systems in the mining”, Middle-East J Sci Res,18: 1–3.
  9. Rao., M. P., Miller, D. M. , 2004,.”Expert systems applications for productivity analysis”, Ind. Manag. Data Syst., 104(9):776–785.
  10. Szwilski, A., 1988, “Significance and measurement of coal mine productivity”, Mining Science and Technology, 6(30): 221-231.
  11. Sakaki, H., 1994, “Planning and improvement of labor productivity in mines”, 3th Iranian Mining Symposium, Yazd University, Yazd, Iran (in Persian).
  12. Jara, J. J., Pérez, P., Villalobos, P., 2010, “Good deposits are not enough: Mining labor productivity analysis in the copper industry in Chile and Peru 1992–2009”, Resources Policy, 35(4):247-256.
  13. Jopp, T.A., 2016, “Did closures do any good? Labor productivity, mine dynamics, and rationalization in interwar Ruhr coal mining”, The Economic History Review, 00(0): 1-36, DOI: 10.1111/ehr.12383.
  14. Neingo, P.N., Tholana, T., 2016, “Trends in productivity in the South African gold mining industry”, Journal of Southern African Institute of Mining and Metallurgy, 116:283-290.
  15. Asafu-Adjaye, J., Mahadevan, R., 2003, “How cost efficient are Australia's mining industries?”, Energy Economics, 25)4 ): 315-329.
  16. Topp, V., Soames, L., Parham, D. and Bloch, H., 2008, “Productivity in the Mining Industry: Measurement and Interpretation”, Australian Government, Productivity Commission, Staff Working Paper, Melbourne, VIC.
  17. محمودی، ز.، صیادی، ا.ر.، رجب‌زاده، ع.،1393، "ارزیابی بهره‌وری انرژی در معادن با رویکرد پویایی سیستمی"، سومین کنفرانس معادن روباز ایران، 29-31 اردیبهشت، کرمان.
  18. محمودی، ز.، صیادی، ا.ر.، رجب‌زاده، ع.،1395، "ارایه مدل پویایی ارزیابی بهره‌وری نیروی کار معادن (مطالعة موردی: مجتمع معدنی و صنعتی چادرملو)"، مجله مدیریت صنعتی دانشکده مدیریت دانشگاه تهران، 2 (8): 308-287.
  19. سلطانی، م.ر.، خدایاری، ف.، صیادی، ا.ر.، رجب‌زاده، ع.، 1392، "بهینه‌سازی بهره‌وری مجتمع فسفات اسفوردی با استفاده از برنامه‌ریزی کسری"، نشریه علمی پژوهشی مهندسی معدن، 8 (20): 35-25.
  20. سلطانی، م.ر.، صیادی، ا.ر.، مهرگان، م.ر ، عابدی، م.ر.،1391، "ارایه رویکرد ترکیبی DEA-APبرای رتبه‌بندی کارایی معادن سنگ آهن ایران"، مجله پژوهش‌های مدیریت منابع سازمانی، 2 (3):64-45.
    1. Durkin, J., 1990, “Research Review: Application of expert systems in the sciences”, The Ohio Journal of Science, 90)5(: 171-179.
    2. Shu-Hsien L., 2005, “Expert system methodologies and applications—a decade review from 1995 to 2004”, Expert Systems with Applications, 28: 93–103.
    3. Akram, M., Abdul Rahman, I., Memon, I., 2014, “A review on expert system and its applications in civil engineering”, International Journal of Civil Engineering and Built Environment, 1: 24-29.
    4. Fayek, A., R., and Oduba, A., 2008, “Predicting industrial construction labor productivity using fuzzy expert systems”, Journal of Construction Engineering and Management, 131(8).
    5. مرادی، م.، مرادی، س.ف طلوعی اشلقی، ع.،1390، "مدلسازی ارزیابی عملکرد کارکنان با استفاده از سیستم خبره"، دو فصلنامه علمی پژوهشی راهبردهای بازرگانی-دانشور رفتار سابق، 1 (47)، 47-1.
      1. Rajak, S., Parthiban, P., Dhanalakshmi, R., 2016, “Sustainable transportation systems performance evaluation using fuzzy logic”, Ecol. Indic., 71: 503–513.
      2. Martilla, J. A., James. J. C., 1977, “Importance performance analysis”, Journal of Marketing, 41(1): 77-79.
      3. صیادی، ا.ر.، رجب‌زاده، ع.،1393، "مطالعه و تدوین چرخه بهره‌وری و تدوین شاخص‌های اصلی آن"، مرکز تحقیقات مواد معدنی ایران - یزد، شرکت تهیه و تولید مواد معدنی ایران.
        1. Mehrbakhsh, N., Karamollah. B., Othman. I., Nasim. J., Mousa. B., 2011, “An application expert system for evaluating effective factors on trust in B2C Websites Trust, Security, ANFIS, Fuzzy Logic, Rule Based Systems”, Electronic Commerce, Engineering, 3: 1063-1071.
        2. Lin, C.C., Chen, S.C., Chu. Y.M., 2011, “Automatic price negotiation on the web: An agent-based web application using fuzzy expert system”, Expert Syst. Appl., 38(5): 5090–5100.
        3. رجب زاده، علی، نیک قدم حجتی، س.، فریدی ماسوله، م.، 1393، انتشارات صفار، 192 صفحه.
        4. فرجی، ح.، آذر، عادل، علم مدیریت فازی، 1389، نشر کتاب مهربان، 308 صفحه
        5. خدیور، آ.، نصر نصرآبادی، ش.، فلاح،ا.،1393،"طراحی سیستم خبره فازی جهت انتخاب استراتژی مدیریت دانش"، پژوهشنامه پردازش و مدیریت اطلاعات،30(1)، 119-91.