مطالعه پترولوژی و کانه‌زایی توده‌های نفوذی دره سه هزار تنکابن به هدف تعیین پتانسیل‌های معدنی

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران.

2 استاد دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران.

چکیده

منطقه سه هزار در جنوب شهرستان تنکابن در استان مازندران واقع شده است که در نزدیکی کمربند طارم هشتجین قرار دارد، وجود توده گرانیتوئیدی در منطقه می‌تواند از نظر پتانسیل کانی‌زایی دارای اهمیت باشد.مجموعه زمین‌شناختی در اطراف محدوده برونزد یافته عمدتاً دربرگیرنده واحدهای سنگی پالئوزوییک تا سنوزوئیک می‌باشد. در مطالعه اخیر تعدادی نمونه جهت مطالعات میکروسکوپی و پتروگرافی و نیز تعدادی نمونه از گرانیت‌های منطقه جهت طبقه‌بندی سنگ‌ها مورد استفاده قرار گرفت. با توجه به بررسی­های انجام شده بر­ روی مقاطع صیقلی، کانی­های پیریت، کالکوپیریت و مگنتیت مشاهده شدند. بافت‌هایی که در نمونه مقاطع نازک مشاهده می‌شود شامل گرانولار، هیالوپورفیریتیک و ویتروفیریک است. وجود بافت‌های پورفیری نشان‌دهندهنفوذی‌های همزمان با آتش‌فشانی و آواری‌های منشأ گرفته از آن‌هاست. کانی‌های اصلی موجود در منطقه شامل کوارتز، فلدسپار پتاسیم، پلاژیوکلاز و در برخی نمونه‌ها هورنبلند بیوتیت، و پیروکسن به‌عنوان کانی اصلی ظاهرشده‌اند. کانی‌های فرعی موجود در نمونه‌ها نیز شامل اسفن، اکسیدهای آهن پیروکسن، آپاتیت و کانی‌های اپک می‌باشند. مطالعات سنگ‌شناسی نشان داد سنگ‌های منطقه از نوع گرانیت،گرانودیوریت، سینیت تا کوارتزسینیت و کوارتزمونزونیت می‌باشد. ماگما در این منطقه از نوع آلکالن تا کالک آلکالن است و از نوع منیزین و در محدوده متاآلومین تا پرآلومین می‌باشد. گرانیت­های منطقه از نوع  پرآلومین و دارای جایگاه تکتونیکی حاشیه فعال قاره­ و از نوع تیپ I می­باشد.برای تایید ارتباط بین عناصر Au-Cu-Fe از زمین‌آمار بر روی داده‌های آبراهه‌ای استفاده شد. مطالعات واریوگرافی بر روی داده‌های آبراهه‌ای نشان داد مدل کروی بهترین مدل برازش داده شده و دامنه وابستگی مکانی برای سه عنصر Au, Cu و Fe تقریباً 350 متر است. ارزیابی نتایج زمین‌آمار با محاسبه مجذور میانگین مربعات خطا (RMSE) و محاسبه میانگین خطا (MAE) نشان‌دهنده دقت قابل قبول مدل واریوگرام است. با توجه به نمودارهای ماینرت، بررسی‌های انجام شده و همبستگی مکانی عناصر این نتیجه به دست می‌آید که این توده‌ها می‌تواند با ذخایر آهن-طلا-مس مرتبط باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Petrology and mineralization of intrusive bodies of the Sehezar Valley of Tonokabon for mineral potential study

نویسندگان [English]

  • Meysam Yazdani 1
  • Firooz Alinia 2
1 Masters Degree Student, Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
2 Faculty Member (Professor), Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

Sehezar area is located in southern Tonokabon in Mazandaran province, north of Iran, near the Tarom – Hashdtjin belt. The existence of granitoid masses in the region can be important in terms of mineralization potential. The geological complex exposed in the area mainly consists of Paleozoic to Cenozoic lithologic units. In this study, a number of samples were used for microscopic and petrographic studies, as well as some samples of granites in the area for the classification of rocks. According to the studies performed on polished sections, minerals of pyrite, chalcopyrite and magnetite were observed. The textures found in thin sections are granular, Hyaloporphyritic, and Vitrophyric. The presence of porphyry textures indicates the simultaneous intrusions with volcanics and clastics originating from them. The major minerals in the region include quartz, K-feldspar, and plagioclase, and in some cases, hornblende, biotite, and pyroxene appear as the major mineral. The minor minerals found in the samples include sphene, pyroxene, iron oxides, apatite, and opaque minerals. Petrographic studies showed that the intrusive rocks of the region are of granite, granodiorite, syenite to quartz-syenite and quartz-monzonite. The magma in this area is in the domain of alkaline to calc-alkaline series and is a magnesian series and in the domain of metaluminous to peraluminous. The granites of the studied area are of peraluminous type and have a tectonic setting of the active continental margin and are I-type. Variogram studies showed that the spherical model is the best fitted model, and the spatial correlation range for the three elements of Au, Cu and Fe are approximately 350 m. Evaluating the results of geostatistics by calculating the root mean square error (RMSE) and calculating the mean absolute error (MAE) indicates the acceptable accuracy of variogram model. According to the Meinert diagrams and spatial correlation of the elements, it is concluded that these masses can be related to the deposits of iron-gold-copper.

کلیدواژه‌ها [English]

  • Petrographic
  • calc-alkaline
  • Peraluminous
  • type I
  • Geostatistics

مراجع

[1]      شرکت مهندسن مشاور کاوشگران، پی‌جویی و پتانسیل‌یابی مواد معدنی در منطقه آرود دره سه هزار. 1390.

[2]      آدابی, محمدحسین؛ کریم‌پور، محمدحسن؛ ۱۳۹۱؛«نامگذاری و طبقه بندی جامع سنگها رسوبی،آذین ودگرگونی»، دانشگاه فردوسی مشهد.

[3]      سعادت، سعید؛کریم‌پور، محمدحسن؛ 1389؛ «زمین شناسی اقتصادی کاربردی»، چاپ ارسلان.

[4]     Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3), 211-238.‏

[5]      دهقانی، معصومه؛ ۱۳۹۲؛ «پتروگرافی و پترولوژی توده نفوذی و سنگهای طارم سفلی»؛ پایان نامه کارشناسی ارشد، دانشگاه امام خمینی (ره).

[6]     Streckeisen, A., Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 1979. 7(7): p. 331-335.

[7]     Cox, K. G. (Ed.). (2013). The interpretation of igneous rocks. Springer Science & Business Media.‏

[8]     Middlemost, E.A., Naming materials in the magma/igneous rock system. Earth-Science Reviews, 1994. 37(3): p. 215-224.

[9]     Miyashiro, A., Volcanic rock series in island arcs and active continental margins. American Journal of Science, 1974. 274(4): p. 321-355.

[10]  De La Roche, H., et al., A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—Its relationships with current nomenclature. Chemical geology, 1980. 29(1): p. 183-210.

[11]  Rollinson, H., Using geochemical data: evaluation, presentation, interpretation, 1993, 48-51. Longman Sci. Technol., New York.

[12]  Barker, F. (1979). Trondhjemite: definition, environment and hypotheses of origin. Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, 1, 12.‏

[13]  O’connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological Survey Professional Paper B, 525, 79-84.‏

[14]  ABDEL-RAHMAN, A. F. M. (1990). Petrogenesis of early-orogenic diorites, tonalites and post-orogenic trondhjemites in the Nubian Shield. Journal of petrology, 31(6), 1285-1312.

[15]  ‏ Wilson, M. (1989).  Igneous petrogenesis, Uniwin Hyman, London.

[16]  Harker, A. (1909). The natural history of igneous rocks. Macmillam.‏

[17]  Harker, A. (2011). The natural history of igneous rocks. Cambridge University Press.‏

[18]  Rollinson, H.R. (1993). Using geochemical data: evaluation, presentation, interpretation, Longman Sci. Technol., New York, 48-51.

[19]  Kuno, H., Origin of andesite and its bearing on the island arc structure. Bulletin Volcanologique, 1968. 32(1): p. 141-176.

[20]  Irvine, T. and W. Baragar, A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 1971. 8(5): p. 523-548.

[21]  Frost, B.R., et al., A geochemical classification for granitic rocks. Journal of Petrology, 2001. 42(11): p. 2033-2048.

[22]  Peccerillo, A. and S.R. Taylor, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 1976. 58(1): p. 63-81.

[23]  Shand, S., Eruptive Rocks, their Genesis. Composition, Classification, and their Relationship to Ore-deposits, 1943.

[24]  Hyndman, D.W., Petrology of igneous and metamorphic rocks. 1985.

[25]  Zen, E., An (1986) Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J. Petrol. 27: p. 1095-1117.

[26]  Chappell, B. and A.J.R. White, Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 2001. 48(4): p. 489-499.

[27]  Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23(8), 2198-2213.‏

[28]  Maniar, P.D. and P.M. Piccoli, Tectonic discrimination of granitoids. Geological society of America bulletin, 1989. 101(5): p. 635-643.

[29]  Chappell, B. and A. White, I-and S-type granites in the Lachlan Fold Belt. Geological Society of America Special Papers, 1992. 272: p. 1-26.

[30]  Batchelor, R.A. and P. Bowden, Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical geology, 1985. 48(1): p. 43-55.

[31]  Chen, Y.-J., et al., Geodynamic settings and tectonic model of skarn gold deposits in China: an overview. Ore Geology Reviews, 2007. 31(1): p. 139-169.

[32]  Meinert, L.D., Compositional variation of igneous rocks associated with skarn deposits–chemical evidence for a genetic connection between petrogenesis and mineralization. Magmas, fluids and ore deposits: Canada, Mineralogical Association of Canada, 1995. 23: p. 401-418.

[33]  Meinert, L.D., Acceptance of the Society of Economic Geologists Silver Medal for 2009. Economic Geology, 2010. 105(8): p. 1520-1521.

[34]  Sillitoe, R.H. and J.W. Hedenquist, Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Special Publication-Society of Economic Geologists, 2003. 10: p. 315-343.

[35]  Pearce, J.A., N.B. Harris, and A.G. Tindle, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 1984. 25(4): p. 956-983.

[36]  Schandl, E.S. and M.P. Gorton, Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 2002. 97(3): p. 629-642

[37]  Müller, D., & Groves, D. I. (2000). Potassic igneous rocks and associated gold-copper mineralization (Vol. 252). Berlin: Springer.‏

[38]  Richards, J.P., High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Economic Geology, 2011. 106(7): p. 1075-1081.

[39]  Bonin, B. and J. Bébien, The granite-upper mantle connection in terrestrial planetary bodies: an anomaly to the current granite paradigm? Lithos, 2005. 80(1): p. 131-145.

[40]  Hassani pak, A.(1998). Geostatistics. Tehran University Press, 314p.

[41]  Nshagali, B. G., Nouck, P. N., Meli'i, J. L., Arétouyap, Z., & Manguelle-Dicoum, E. (2015). High iron concentration and pH change detected using statistics and geostatistics in crystalline basement equatorial region. Environmental Earth Sciences, 73(11), 7135.

[42]  Jiachun S., Hazian W., Jianming X., Jinjun W., Xingmei L., Haiping Z., and Shunlan J. 2006. Spatial distribution of heavy metals in soil: A case study of Changing, China. Environ ment al Geology Geol, 10:245-264.

[43]  Webster, R. and Oliver, M.A. 2000. Geostatistics for environmental scientists. Wiley press, 271p.

[44]  Marko, K., Al-Amri, N. S., & Elfeki, A. M. (2014). Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arabian Journal of Geosciences, 12(7), 5239-5252.