Smart Variogram Modeling Using Deep Learning Method

Document Type : research - paper

Authors

1 Departmant of Mining Engineering, Collage of Engineering University of Tehran, Iran

2 Department of Mining Engineering, Collage of Engineering, University of Tehran, Iran

3 Faculty Member of University of Tehran

10.22034/ijme.2023.1971331.1950

Abstract

Calculation of variograms and spatial continuity is one of the first and most important processes in geostatistical modeling, which is a long and experience-oriented process. Due to the complexities of calculating experimental variograms, interpretation and fitting the appropriate model are always the main challenges in this field. This article presents an intelligent variogram modeling method using deep learning that can increase the speed of variogram modeling and also prevent common errors in manual variogram model fitting. In this method, two convolutional neural networks are used. The first CNN network converts the initial data into a 2D simulated map based on various variogram models. For this purpose, it is necessary to train the first network with initial data and their corresponding simulations. The output of this model is entered into the second convolutional neural network as input, and the variogram parameters (including range, azimuth, ratio, and nugget effect) are predicted. In this article, the proposed algorithm is implemented on synthetic 2D data and the parameters of the CNN models are optimized. The accuracy of the proposed model was 97 %, and then the proposed algorithm was used for variogram modeling of Nouchon area geochemical data, which included the elements Cu, Zn, and Pb. the accuracy of the obtained model compared to manual fitting was 90%.

Keywords

Main Subjects