Risk reduction of Grade Uncertainty in production scheduling of vein reserves (case study: Taknar copper mines)

Document Type : research - paper

Authors

IKIU

Abstract

Implementation the appropriate approaches to reducing the risk of uncertainties in Mine production planning process, maximizes net present value of extraction plan with high degree of confidence. In Maximum upstream potential/Minimum downside risk approach, the key economic factors in final plan, should be realized with any grade distribution of reserve. With reduction the risk of project evaluation factors as downstream, the upstream potential such as reserve tonnage must be realized at the same time. For implementation of this approach with some changes, in this study, 10 different grade distribution model of the copper vein reserve were simulated with a Gaussian simulation tool in Datamine software. At next step, after implementation of technical and economic parameters, the construction of nested pits for each simulated model as extraction plans and optimization performed with the Lerch-Grossman algorithm in Whittle software. Each plan were integrated into other designs obtained from simulated models. Then, the key parameter of each plan were calculated and some plans were eliminated. The calculation of upside potential and downside risks in remaining plans performed based on supplying of 95 thousand tons feed with an 80% probability of realization and the ability to return investment of 31 billion Rial that spent on the development of the second phase of the processing plant. Finally the high priority plan was selected. The mineable reserve in selected plan was estimated about 71000 tons with average grade of 0.25% copper, which is much lower compared to the 375000 tons that estimated in the previous studies.

Keywords


منابع 1. Dimitrakopoulos, R. and Ramazan, S., 2004. "Uncertainty based production scheduling in open pit mining". SME transactions, 316.## 2. Dimtrakopoulos, R., Martinez, L., Ramazan, S., 2007, “A maximum upside/minimum downside approach to the traditional optimization of open pit mine design”, Journal of Mining Science, 43(1), 73-82.## 3. Dimitrakopoulos, R, Farrelly, C. Godoy, M; 2002; “Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design”, Mining Technology, 111(1); 82-88.## 4. Burmeister, B. From resource to reality: A critical review of the achievements of new Austtralian gold mining projects during (1983-1987), Macquarie University (1998). ## 5. Ravenscroft, P., 1992,”Risk analysis for mine scheduling by conditional simulation”, Transactions of the Institution of Mining and Metallurgy. Section A. Mining Industry, 101.## 6. Osanloo. M, Gholamnejad.J, Karimi.B, 2008, “Long-term open pit mine production planning: a review of models and algorithms”, International Journal of Mining, Reclamation and Environment, 22(1) 3-35.## 7. Dowd, P.A, 1994,” Risk assessment in reserve estimation and open-pit planning”, in Transactions of the Institution of Mining and Metallurgy (Section A: Mining Industry), 103.## 8. Denby, B., and D. Schofield. 1995,"Inclusion of risk assessment in open-pit design and scheduling." International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. Vol. 5. No. 32## 9. Dimitrakopoulos.R, 1998, “Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation”, International Journal of Surface Mining, Reclamation and Environment, 12(4) 173-179.## 10. Godoy, M., Dimitrakopoulos, R., 2004, “Managing risk and waste mining in long-term production scheduling of open-pit mines”, SME transactions, 316(3).## 11. Ramazan, S. Dimitrakopoulos, R, 2004, “Traditional and new MIP models for production scheduling with in-situ grade variability”, International Journal of Surface Mining, 18(2) 85-98.## 12. Whittle, D. Bozorgebrahimi, A, 2004, “Hybrid Pits: Linking Conditional Simulation and Lerchs-Grossman through Set Theory”, Orebody Modelling and Strategic Mine Planning, 14, 1-4.## 13. Leite, A. Dimitrakopoulos, R, 2007, “Stochastic optimisation model for open pit mine planning: application and risk analysis at copper deposit”, Mining Technology, 116(3), 109-118.## 14. Gholamnejad, J, Osanloo, M, 2007, ”Incorporation of ore grade uncertainty into the push back design process”, Journal of the South African Institute of Mining & Metallurgy, 107(3), 177.## 15. Goodfellow, R., Dimitrakopoulos, R, 2016, “Global optimization of open pit mining complexes with uncertainty”, Applied Soft Computing, 40(2), 292-304. ## 16. عطائی، محمد؛ حسینی،سیدمهدی؛ ۱۳۹۰؛ «طراحی محدوده و برنامه‌ریزی تولید در معادن سطحی» انتشارات جهاد دانشگاهی امیرکبیر.## 17. صیادی، احمدرضا؛ فتحیان‌پور،نادر؛ موسوی، امین ا...؛ ۱۳۹۱؛ « کاربرد شبیه‌سازی گوسی متوالی شرطی در تعیین عدم قطعیت عیار بلوک های تخمینی در معدن فسفات اسفوردی» روش‌های تحلیلی و عددی در مهندسی معدن، شماره ۳، ۴۴-۵۲.## 18. Menabde, M. Froyland, G., Stone, P., Yeates, G, 2004, “Mining schedule optimisation for conditionally simulated orebodies”. In Proceedings of the international symposium on orebody modelling and strategic mine Planning: uncertainty and risk management, pp. 347-352## 19. Dimitrakopoulos, R., 2011, “Stochastic optimization for strategic mine planning: a decade of developments”, Journal of Mining Science, 47(2) 138-150.## 20. Deutsch, C. Journel, A, 1992,” GSLIB Geostatistical Software Library and User’s Guide”, New York: Oxford Univ, in Press.## 21. مر، فرید ؛ ۱۳۹۳؛ «کاهش ریسک ناشی از عدم قطعیت عیاری در برنامه‌ریزی بلندمدت معدن فسفات اسفوردی» پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.## 22. حمداد فرامرزی، حسین؛ شکورشهابی،رضا ؛ ۱۳۹۷؛ «بررسی تاثیر فاکتورهای هندسی ذخایر بر پارامترهای مدل‌سازی نرم‌افزاری با تاکید بر کانسارهای رگه‌ای» یافته‌های نوین زمین‌شناسی کاربردی، شماره ۲۳، ص ۱۴۰-۱۵۲.##