تحلیل حساسیت شبکه‌های تهویه با روش‌های مبتنی بر مشتق

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استخراج، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشگاه صنعتی امیرکبیر

چکیده

تحلیل و محاسبه شبکه‌های تهویه یکی از مهمترین بخش‌های طراحی، پیش از استخراج است. شبکه طراحی شده در حین عملیات استخراج ممکن است تحت تأثیر پارامترهایی داخلی و خارجی قرار گیرد و در نتیجه کارائی پیش‌بینی شده در مرحله طراحی را نداشته باشد. شناسائی پارامترهای دخیل در کارائی یک شبکه تهویه در طول مرحله‌های آماده سازی و فرایند استخراج اهمیت فراوانی دارد. با در نظر گرفتن عدم قطعیت موجود در تغییرات مقاومت ناشی از عوامل داخلی و خارجی، ورودی مدل تحلیل حساسیت شبکه تهویه، تغییرات مقاومت در نظر گرفته شده است. شیب تفاضل محدود تغییرات شدت جریان پس از هر بار تغییر مقاومت نسبت به شدت جریان در حالت عادی به عنوان کمیت حساسیت اندازه‌گیری شده است. آنالیز حساسیت برای شبکه تهویه معدن تخت انجام شده است. تغییرات مقاومت در تونل اصلی که وظیفه حمل و نقل پرسنل و مواد حاصل از استخراج را بر عهده دارند به عنوان وروودی مدل تحلیل حساسیت در نظر گرفته شده است. بر اساس رابطه افت فشار، تغییرات شدت جریان همه شاخه‌ها به ازای هر بار تغییر به عنوان خروجی مدل ذخیره شده است. شیب تفاضل محدود تغییرات شدت جریان پس هر بار اعمال تغییر مقاومت به عنوان مقدار حساسیت هر شاخه محاسبه شده است. بیشترین مقدار معرف حساس‌ترین شاخه نسبت به تغییر مقاومت در تونل اصلی است. حساس‌ترین شاخه، تونل خروج هوای تهویه شده از بخش‌های مختلف معدن و دویل تهویه منتقل کننده هوا بین دو تراز ارتفاعی متفاوت است. شاخه‌های با حساسیت بالا ریسک بالاتری برای از کار افتادن دارند بنابراین می‌توان حساسیت هر شاخه از شبکه را به عنوان ضریبی در مدل تحلیل قابلیت اطمینان شبکه‌های تهویه وارد کرد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity Analysis of mine ventilation network by derivative methods

نویسندگان [English]

  • Zohre Rezaei 1
  • M Ataeepour 2
  • Hassan madani 2
1 Mining & Metallurgy Engineering Department, AmirKabir University of technology, Tehran, Iran
2 Amirkabir University of Technology
چکیده [English]

Underground mine ventilation networks are affected by various parameters which have not been seen at the planning phase. The efficiency of ventilation network is related to this parameter. In this research, resistance variation is defined as one of the parameters involved in ventilation performance. Uncertainty of resistance variation in ventilation networks during mine life was modeled by sensitivity analysis method. For this goal, limited differential gradient of flow alteration against variation of resistance was calculated for each branch. The proposed method was implemented for the TAKHT mine ventilation network. Changes of resistance at main tunnel responsible for the transportation of persons and extracted materials were considered as inputs of the sensitivity analysis model. The maximum amounts of limited differential gradient are related to the most sensitive branches against resistant variation in the main tunnel. They are an air outflow tunnel and a ventilation duct. High-sensitivity branches have a higher risk for failure in the ventilation system, so the sensitivity of each branch can be considered as a factor in the reliability analysis model.

کلیدواژه‌ها [English]

  • Sensitivity analysis
  • Network
  • ventilation
  • Risk
  • Takht mine

منابع

  1. Song, Y., Guo, X., Lv, W., Guo, H., & Li, R. (2017). A SIMULATION STUDY ON THE RECONSTRUCTION OF COALMINE VENTILATION SYSTEM BASED ON WIND RESISTANCE CORRECTION. International Journal of Simulation Modelling (IJSIMM), 16(1).
  2. Kurnia, J.C., A.P. Sasmito, and A.S. (2014) Mujumdar, Simulation of a novel intermittent ventilation system for underground mines. Tunnelling and Underground Space Technology, 42: p. 206-215.
  3. George, D., B. Davood, and M.-J. (2011) Pierre, Ventilation and climate simulation with the Multiflux code. Journal of Coal Science and Engineering (China), 17(3): p. 243.
  4. Liu, Y., Wang, S., Deng, Y., Ma, W., & Ma, Y. (2016). Numerical simulation and experimental study on ventilation system for powerhouses of deep underground hydropower stations. Applied Thermal Engineering, 105, 151-158.
  5. Zhang, G., Hong, Y., Yang, Q., Ji, H., & Lv, G. (2015). Numerical Simulation of Energy Saving Potential in Dispersing Process of Blasted Smoke in Mines. Journal of Harbin Institute of Technology, 4, 014
  6. Massanés, M.B., L.S. Pera, and J.O. Moncunill. (2015) Ventilation management system for underground environments. Tunnelling and Underground Space Technology, 50: p. 516-522
  7. Hitch, M. and G. Dipple.( 2012) Economic feasibility and sensitivity analysis of integrating industrial-scale mineral carbonation into mining operations. Minerals Engineering, 39: p. 268-275
  8. eqing, H.X.L.Z.G. and L. Xiao. (2007) Numerical Simulation and Sensitivity Analysis of Slope Stability in Mine Transferred from Open Pit to Underground Mining [J]. Metal Mine. 6: p. 002
  9. Palei, S. and S. Das.(2008) Sensitivity analysis of support safety factor for predicting the effects of contributing parameters on roof falls in underground coal mines. International Journal of Coal Geology. 75(4): p. 241-247
  10. Wang, Y.( 2014) The Airflow Abnormal Value Analysisof Mine Ventilation Network Based on the Sensitivity. in Advanced Materials Research. Trans Tech Publ.
  11. Li, G., C. Kocsis, and S. Hardcastle. (2011) Sensitivity analysis on parameter changes in underground mine ventilation systems. Journal of Coal Science and Engineering (China). 17(3): p. 251-255.
  12. Iman, R.L. and J.C. Helton. (1988) An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk analysis, 8(1): p. 71-90.
  13. Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232
  14. Hamby, D. (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environmental monitoring and assessment, 32(2): p. 135-154.
  15. Devenish, B., Francis, P., Johnson, B., Sparks, R., & Thomson, D. (2010) Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull. Journal of Geophysical Research: Atmospheres, 117
  16. ربیع‌نژاد, ح., خ. فعالیان, ا. الهی, (1387) تجزیه و تحلیل شبکه تهویه معدن رضی با استفاده از نرم افزار ونتسیم، دفتر فنی و طراحی معدن رضی.
    1. Young, D. F., Munson, B. R., Okiishi, T. H., & Huebsch, W. W. (2010). A brief introduction to fluid mechanics: John Wiley & Sons.
    2. Skochinsky, A., V. Komarov, and J.S. Scott. (1969) Mine ventilation.