بهینهسازی هزینه انفجار در معادن سنگ آهک با الگوریتم PSO

نوع مقاله: علمی - پژوهشی

نویسندگان

1 گروه معدن، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 گروه مهندسی معدن، دانشکده مهندسی، دانشگاه کاشان

3 گروه مهندسی معدن،دانشکده فنی و مهندسی،دانشگاه آزاد اسلامی، واحد قائمشهر، ایران

4 گروه‏ مهندسی ‏معدن، دانشکده فنی و مهندسی، دانشگاه‏آزاداسلامی، ‏واحدعلوم‏ و تحقیقات، تهران، ایران

چکیده

پیش بینی و بهینه سازی هزینه انفجار برای رسیدن به خردایش مطلوب با در نظر داشتن کنترل پیامدهای نامطلوب ناشی از انفجار قابل توجه است. در این پژوهش با جمع آوری داده های انفجار از 6 معدن سنگ آهک در ایران با استفاده از رگرسیون چند متغیره غیر خطی با ارائه مدلی به منظور پیش بینی هزینه انفجار پرداخته شد. این مدل در مقایسه با مدل رگرسیون چند متغیره خطی ضریب همبستگی بالاتری (913/0) و جذر متوسط مربعات خطا کمتری (1089) دارد و مدل غیرخطی در مقایسه با مدل خطی تطابق بهتری را با هزینه‌های واقعی انفجار نشان می دهد. براساس آنالیز حساسیت انجام گرفته، فاصله‏داری و تعداد چال‌ها به ترتیب بیشترین و کمترین تأثیر را بر روی مدل هزینه انفجار داشتند. هم‏چنین در این پژوهش با استفاده از روش رگرسیون چند متغیره غیرخطی علاوه بر دست‏یابی به تابع هزینه انفجار، توابع محدودکننده‌ مورد نظر در انفجار شامل خردایش، پرتاب سنگ و عقب زدگی مدل و این توابع به عنوان ورودی در الگوریتم فرا ابتکاری تراکم ذرات ((PSO برای بهینه سازی هزینه انفجار استفاده شد. با استفاده از این روش فاصله‏داری، تعداد و طول چال‏ها به ترتیب 6/3 متر، 462 حلقه و 13 متر به‌عنوان پارامترهای طراحی انفجار و متوسط دانه بندی، پرتاپ سنگ و عقب زدگی به ترتیب 44 سانتی‌متر، 5/84 متر و 6/3 متر به عنوان محدودیت های انفجار و هزینه انفجار 6235 ریال بر تن به دست آمد که منجر به کاهش 9/12 درصدی هزینه انفجار و کنترل بهینه پیامدهای نامطلوب ناشی از انفجار شد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of blasting cost in lime stone mines using PSO metaheuristic algorithm

نویسندگان [English]

  • reza Bastami 1
  • abbas Aghajani Bazzazi 2
  • Hadi Hamidian Shoormasti 3
  • Kaveh Ahangari 4
1 Mining group, Islamic Azad University Science and Research Branch,Tehran,Iran
2 Department of mining engineering, University of Kashan, kashan, Iran
3 Mining Engineering, Assistant Professor, Islamic Azad University Qaemshahr Branch, Iran
4 Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

The prediction and optimization of blasting cost to achieve optimal fragmentation is significant, considering the control of the adverse consequences of the blast. In this study, by collecting blasting data in six limestone mines in Iran, a model was developed to predict the cost of blast using nonlinear multivariate regression. Compared to linear regression model, this model has a higher correlation coefficient (0.913) and root mean square error (1089) and in comparison, with the linear model, the nonlinear model shows a better match with the actual cost of the blast. Based on sensitivity analysis, spacing and number of holes had the highest and the least effect on the cost model of the blast, respectively. In addition, in this study along with achieving the blast cost function, the restrictive functions of the blast include fragmentation, fly rock and back break was modeled using nonlinear multivariate regression method, and these functions as inputs in the metaheuristic algorithm of Particles Swarm Optimization (PSO) were used to optimize the cost of blast. Using this method of spacing, the number and length of holes as design parameters of blast are 3.6 meters, 462 loops, and 13 meters respectively and fragmentation fly rock and back break as blasting limitations are 44 cm, 84.5 meters and 3.6 meters and blasting cost was 6235 Rials per ton, which results in a 12.9 percent reduction in the cost of blast and optimal control of the adverse consequences of the blast.

کلیدواژه‌ها [English]

  • Blasting cost
  • Limestone mines
  • nonlinear multivariate regression
  • Particles swarm Optimization algorithm
  • Optimization