کارآیی نانورس هیدروکسید دوگانه لایه ای (Mg/Al) سنتز شده در حذف یون سیانید از محلول های ساختگی و واقعی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناسی ارشد فرآوری مواد معدنی، دانشگاه بیرجند، بیرجند، ایران

2 استادیار گروه مهندسی معدن، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

پساب‌های حاصل از برخی فعالیت‌های معدنکاری و متالورژیکی حاوی مقدار قابل توجهی سیانید هستند که بواسطه سمیت بالای سیانید باید قبل از ورود به محیط ‌زیست تصفیه شوند. یکی از تکنولوژی‌های کاربردی برای حذف سیانید از پساب، روش جذب سطحی است. هیدروکسیدهای دوگانه لایه‌ای (LDH) گروه خاصی از کانی‌های رسی بوده که با موفقیت برای حذف برخی آلاینده‌های آنیونی از محلول‌های آبی بکار گرفته شده-اند. در این تحقیق LDH با استفاده از فرآیند هم‌رسوبی و نسبت 3:1 از نمک‌های نیترات منیزیم و آلومینیوم با خلوص آزمایشگاهی و صنعتی سنتز گردید و کاربرد آن برای حذف سیانید (CN-) از محلول‌های آبی مطالعه شد. ترکیب شیمیایی و کانی شناسی نمونه سنتز شده توسط XRD، XRF، میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنج تفکیک طول موج (WDX) بررسی شدند. تأثیر پارامترهای دما، جرم جاذب، سرعت همزن و pH بر ظرفیت جذب LDH به روش طراحی آزمایش با استفاده از نرم افزار DX7 بررسی شد. شرایط بهینه جهت حذف یون سیانید در دمای oC60، جرم جاذب 5/1 گرم، دور همزن rpm500 و pH برابر با 52/9 تعیین گردید که در این شرایط بیشترین میزان ظرفیت جذب LDH سنتز شده برای سیانید به میزان mg/g 80/73 به دست آمد. داده‌های ظرفیت تعادلی از مدل لانگمیر و داده‌های سینتیک جذب از مدل سینتیکی شبه مرتبه دوم به بهترین وجه پیروی می‌کند. مرحله کنترل کننده نرخ جذب براساس انطباق داده‌های جذب با مدل وبر و موریس، نفوذ درون‌ذره‌ای تشخیص داده شد و نحوه جذب یون سیانید بر LDH با توجه به ترکیب شیمیایی و ساختار کانی‌شناسی آن از نوع تبادل یونی است. LDH سنتز شده با استفاده از نمک‌های با خلوص صنعتی نیز قابلیت بالایی برای حذف یون سیانید از محلول نشان داد. همچنین تصفیه پساب واقعی توسط LDH نشان داد که با دوز جاذب g/L20 می‌توان بیش از 84% سیانید را از پساب حذف نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The study of the removal conditions of free cyanide from wastewaters by layered double hydroxide through experimental design technique, kinetic and equilibrium studies

نویسندگان [English]

  • Rasool Alaei 1
  • sepideh javanshir 2
  • Ali Behnamfard 2
1 M.Sc. student of mineral processing engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
2 Mining engineering department, Faculty of Engineering, University of Birjand, Birjand, Iran.
چکیده [English]

The wastewaters of the mining and metallurgical activities must be treated before discharging into the environment due to the highly toxicity of cyanide. One of the most efficient technologies for the removal of cyanide from wastewaters is adsorption. In this research, layered double hydroxides (LDHs) known as anionic clays was synthesized by co-precipitation process using a 3:1 ratio of magnesium nitrate and aluminum nitrate and used for removal of cyanide from aqueous solutions. The chemical and mineralogical compositions of LDH were investigated using XRD, XRF and Scanning Electron Microscopy (SEM) and Wavelength Dispersive X-ray (WDX) analysis methods. The largest particle size of LDH was determined about 4 nm using Scherrer equation which indicates that the synthesized LDH is in the range of nano-sized materials. The effect of temperature, absorbent dosage, stirring speed and pH on the adsorption capacity of LDH for cyanide was investigated using experimental design method by DX7 software. The optimum conditions were determined to be temperature=60oC, adsorbent weight=1.5 g, rotation speed=500 rpm and pH=9.52. In this condition, the maximum adsorption capacity of synthesized LDH for cyanide was 73.80 mg/g. The equilibrium data and the kinetic data were best modeled by Langmuir isotherm model and pseudo-second-order kinetic model, respectively. The rate limiting step was determined to be intraparticle by adopting the adsorption data with Weber and Morris model and the adsorption of cyanide onto LDH is occurred through ion-exchange mechanism due to chemical composition and mineralogical structure of LDH. LDH synthesized using salts of industrial purity also showed high potential for removal of cyanide ions from the solution. Also, the treatment of a real wastewater by LDH showed that with an absorbent dose of 20 g /L, more than 84% of the cyanide can be removed from the wastewater.

کلیدواژه‌ها [English]

  • Cyanide contaminated wastewater
  • Layered Double Hydroxide
  • Adsorption
  • Design of experiment
  • Kinetic and equilibrium Modeling
- منابع
[1] Moussavi, G.; Khosravi, R.; 2010; ''Removal
of cyanide from wastewater by adsorption onto
pistachio hull wastes: Parametric experiments,
kinetics and equilibrium analysis'', Journal of
Hazardous Materials, 183, 724.
[2] Agency for Toxic Substances and Disease
Registry (ATSDR), Toxicological profile for
Cyanide. Atlanta, GA: U. S. Department of
Health and Human Services, Public Health
Service, 2006.
[3] Jaszczak, E.; Polkowska, Z.; Narkowicz, S.;
Namieśnik, J.; 2017; "Cyanides in the
environment—analysis—problems and
challenges", Environtal Science and Pollution
Research, 24, 15929.
[4] Dash, R. R., Gaur, A. and Balomajumder, C.;
2009; ''Cyanide in industrial wastewaters and
its removal: A review on biotreatment'',
Journal of Hazardous Materials, 163, 1-11.
[5] Alonso-gonzález, O.; Nava-alonso, F.; Uribesalas,
A.; Dreisinger, D.; 2010; ”Use of
quaternary ammonium salts to remove copper–
cyanide complexes by solvent extraction''
Minerals Engineering, 23, 765.
[6] Marsden, J. O., House, C. I., The chemistry of
gold extraction. 2nd ed. Society for Mining,
Metallurgy, and Exploration, Colorado, USA,
2006.
[7] Jafari, A. J., Kakavandi, B., Kalantary, R. R.,
Gharibi, H., Asadi, A., Azari, A., Babaei, A.
A., Takdastan, A.; 2016; ''Application of
mesoporous magnetic carbon composite for
reactive dyes removal: Process optimization
using response surface methodology'', Korean
Journal of Chemical Engineering, 33 (10),
2878-2890.
[8] Ahmadi, M.; Rahmani, H.; Takdastan, A.;
Jaafarzadeh, N.; Mostoufi, A.; 2016; ''A novel
catalytic process for degradation of bisphenol
A from aqueous solutions: A synergistic effect
of nano-Fe3O4@Alg-Fe on O3/H2O2'', Process
Safety and Environmental Protection, 104,
413-421.
[9] Behnamfard, A.; Salarirad, M. M.; 2009;
''Equilibrium and kinetic studies on free
cyanide adsorption from aqueous solution by
activated carbon'', Journal of Hazardous
Materials, 170, 127.
« مهندسی معدن » سنتز شده در حذف یون سیانید ... نشریه علمی پژوهشی (Mg/Al) کارآیی نانورس هیدروکسید دوگانه لایهای
119
[10] Mbadcam, J. K.; Ngomo, H. M.; Tcheka, C.;
Rahman, A. N.; Djoyo, H. S.; Kouotou, D.;
2009; ''Batch Equilibrium Adsorption of
Cyanides from Aqueous Solution onto
Copper and Nickel-Impregnated Powder
Activated Carbon and Clay'', Journal of
European Psychology Students, 3, 53.
[11] Ferencz, Z.; Kukovecz, A.; Kónya, Z.; Sipos,
P.; Pálinkó, I.; 2015; " Optimization of the
synthesis parameters of mechanochemically
prepared CaAl-layered double
hydroxide"Applied Clay Science, 112, 94.
[12] Kameda, T.; Oba, J.; Yoshioka, T.; 2015;
''New treatment method for boron in aqueous
solutions using Mg–Al layered double
hydroxide: Kinetics and equilibrium studies'',
Journal of Hazardous Materials, 293, 54.
[13] Yang, Y.; Gao, N.; Deng, Y.; Zhou, S.; 2012;
"Adsorption of perchlorate from water using
calcined iron-based layered double
hydroxides"Applied Clay Science, 65–66, 80-
86.
[14] Song, H. -l.; Jiao, F. -p.; Jiang, X. -y.; Yu, J. -
g.; Chen, X. -q.; Du, S. -l.; 2013; "Removal
of vanadate anion by calcined Mg/Al-CO3
layered double hydroxide in aqueous
solution" Transactions of Nonferrous Metals
Society of China, 23(11), 3337-3345.
[15] Isaacs-Paez, E. D.; Leyva-Ramos, R.; Jacobo-
Azuara, A.; Martinez-Rosales, J. M.; Flores-
Cano, J. V.; 2014; "Adsorption of boron on
calcined AlMg layered double hydroxide
from aqueous solutions. Mechanism and
effect of operating conditions" Chemical
Engineering Journal, 245, 248-257.
[16] Yang, Q.; Zhong, Y.; Li, X.; Li, X.; Luo, K.;
Wu, X.; Zeng, G.; 2015; "Adsorption-coupled
reduction of bromate by Fe(II)–Al(III)
layered double hydroxide in fixed-bed
column: Experimental and breakthrough
curves analysis", Journal of Industrial and
Engineering Chemistry, 28, 54-59.
[17] Zhao, Q.; Tian, S.; Yan, L.; Zhang, Q.; Ning,
P.; 2015; "Novel HCN sorbents based on
layered double hydroxides: Sorption
mechanism and performance", Journal of
Hazardous Materials , 285, 250-258.
[18] Vasudevarao, B.; Natarajan, D. P.;
Henderson, M.; Razdan, A.; 2000;
''Sensitivity of RP surface finish to process
parameter variation'', Solid freeform
fabrication proceedings, pp 251.
19 ] جوانمردی، پرویز، تکدستان، افشین، جلیلزاده ینگجه، رضا، ]
1397 ، "کارایی زئولیت طبیعی کلینوپتیلولایت جهت حذف
فلز سرب از محلولهای آبی و تعیین ایزوترم و سینتیک
.114- 108 ،(1) جذب"، مجله آب و فاضلاب، 29
[20] Dash, R. R.; Balomajumder, C.; Kumar, A.;
2008; ''Treatment of metal cyanide bearing
wastewater by simultaneous adsorption
and biodegradation (SAB)'', Journal of
Hazardous Materials, 152, 387.
[21] Logsdon, M. J.; Hagelstein, K.; Mudder, T.;
1999; ''The management of cyanide in gold
extraction'' International Council on Metals
and the Environment, Ottawa.
[22] Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju,
Y. H.; Indraswati, N.; Ismadji, S.; 2009;
"Equilibrium and kinetic studies in adsorption
of heavy metals using biosorbent: a summary
of recent studies", Journal of hazardous
materials, 162(2-3), 616-645.
[23] Weber, W. J.; Morris, J. C.; 1963; "Kinetics
of Adsorption of Carbon from Solution"
Journal of the Sanitary Engineering Division,
American Society of Civil Engineering, Vol.
89, No. 1, , 31-60.
[24] Saha, P.; Chowdhury, S.; 2011. Insight into
adsorption thermodynamics, Thermo
dynamics, Tadashi, M. (Ed. ), ISBN: 978-
953-307-544-0, InTech, Available from:
http://www. intechopen. com/ books/
thermodynamics/ insight-into-adsorptionthermodynamics
« مهندسی معدن » رسول علایی، سپیده جوانشیر و همکار نشریه علمی پژوهشی
120
[25] Du, L.; Qu, B.; Meng, Y.; Zhu, Q.; 2006;
"Structural characterization and thermal and
mechanical properties of poly(propylene
carbonate) /MgAl- LDH exfoliation
nanocomposite via solution intercalation",
Composites Science and Technology, 66,
913.
[26] Arco, M. D.; GutieHrrez, S.; MartmHn, C.;
Rives, V.; Rocha, J.; 2000; "Effect of the
Mg:Al Ratio on Borate (or Silicate)/Nitrate
Exchange in Hydrotalcite", Journal of Solid
State Chemistry, 151, 272.
[27] Xu, Z. P.; Zeng, H. C.; 2001; "Decomposition
Pathways of Hydrotalcite-like Compounds
Mg1-xAlx(OH)2(NO3)x. nH2O as a Continuous
Function of Nitrate Anions", Chemistry of
Materials, 13, 4564.
[28] Saxena, S.; Prasad, M.; Amritphale, S.;
Chandra, N.,; 2001; ''Adsorption of cyanide
from aqueous solutions at pyrophyllite
surface'', Separation and Purification
Technology, 24(1-2), 263-270.
[29] Adhoum, N.; Monser, L; 2002; ''Removal of
cyanide from aqueous solution using
impregnated activated carbon'', Chemical
Engineering and Processing: Process
Intensification, 41(1), 17-21.
[30] Monser, L.; Adhoum, N.; 2002; ''Modified
activated carbon for the removal of copper,
zinc, chromium and cyanide from
wastewater'', Separation and Purification
Technology, 26(2-3), 137-146.
[31] Deveci, H.; Alp, I.; Uslu, T.; 2006; ''Removal
of cyanide from aqueous solutions by plain
and metal-impregnated granular activated
carbons'', International Journal of Mineral
Processing, 79(3), 198-208.
[32] Ok, Y. S.; Jeon, C.; 2014; ''Selective
adsorption of the gold–cyanide complex from
waste rinse water using Dowex 21K XLT
resin'', Journal of Industrial and Engineering
Chemistry, 20(4), 1308-1312.
[33] Hattab, Z. h.; Filali, N.; Mazouz, R.; Guerfi,
K.; Rebbani, N.; Nafa, A.; Kheriaf, S.; 2016;
''Adsorption of cyanide ions in aqueous
solution using raw and oxidized coke'',
Desalination and Water Treatment, 57(8),
3522-3531.
[34] Abbas, M. N.; Abbas, F. S.; Ibrahim, S. A.;
2014; ''Cyanide removal from wastewater by
using banana peel'', Journal of Asian
Scientific Research, 4(5), 239-247.
[35] Eletta, O.; Ajayi, O.; Ogunleye, O.; Akpan, I.;
2016; ''Adsorption of cyanide from aqueous
solution using calcinated eggshells:
Equilibrium and optimisation studies'',
Journal of Environmental Chemical
Engineering, 4(1), 1367-1375.
[36] El-Aila, H. J.; Elsousy, K. M.; Hartany, K.
A.; 2016; ''Kinetics, equilibrium, and
isotherm of the adsorption of cyanide by
MDFSD'', Arabian Journal of Chemistry, 9,
S198-S203.
[37] Gebresemati, M.; Gabbiye, N.; & Sahu, O.;
2017; “Sorption of cyanide from aqueous
medium by coffee husk: Response surface
methodology” Journal of Applied Research
and Technology, 15(1), 27-35.
[38] Maulana, I.; Takahashi, F.; 2018; ''Cyanide
removal study by raw and iron-modified
synthetic zeolites in batch adsorption
experiments'', Journal of Water Process
Engineering, 22, 80-86.
[39] Noroozi, R.; Al-Musawi, T. J.; Kazemian, H.;
Kalhori, E. M.; Zarrabi, M.; 2018; ''Removal
of cyanide using surface-modified Linde
Type-A zeolite nanoparticles as an efficient
and eco-friendly material'', Journal of Water
Process Engineering, 21, 44-51.