ارائه یک مدل تحلیل برای محاسبه فشار رو به بالا در کف تونل‌ها با ویژگی‌های ژئومکانیکی ضعیف

نوع مقاله : علمی - پژوهشی

نویسنده

دانشگاه آزاد محلات

چکیده

پژوهش در مورد تحلیل تنش در اطراف تونل، به ویژه دیواره و سقف آن سابقه زیادی دارد. اما در مورد کف تونل تحلیل زیادی صورت نگرفته است. در این مقاله با کمک روش تعادل حدی و اصول مکانیک خاک سعی شده تا روشی تحلیلی ارائه شود که بتوان نسبت به برآورد فشار آماس کف تونل در محیط‌های خاکی و توده سنگ‌های به شدت درزه‌دار که دارای رفتاری چون خاک هستند، اقدام نمود. فشار رو به بالا در کف تونل می‌تواند ناشی از پدیده تورم در سنگ‌ها و خاک‌های رسی به خاطر تغییر رطوبت، شدت میدان تنش و بروز پدیده لهیدگی، بزرگی قطر تونل و زون پلاستیک، زلزله و فشار آب منفذی و یا خزش و زمین لغزش رخ دهد. اما در این پژوهش صرفاً به بررسی این پدیده ناشی از میدان تنش و شرایط ژئومکانیکی محیط و فشار آب منفذی پرداخته شده است. علاوه بر این مشخص شد که برای چسبندگی‌های بیش از 300 کیلو پاسکال و زاویه اصطکاک داخلی بیش از 33 درجه در تونل‌های با عمق کمتر از 100 متر و دهانه 6 متر، می‌توان از فشار رو به بالا در کف تونل و احتمال ایجاد شدن گوه ناپایدار در آنجا صرفه نظر نمود. به منظور ساده سازی در استفاده از مدل (مجموعه روابط) و یا برنامه نویسی، یک فلوچارت نیز پیشنهاد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Analytical model for calculation of invert up-lift pressure of tunnels in poor quality grounds

نویسنده [English]

  • Shobeir Arshadnejad
Mining Engineering Department, Mahallat Branch, Azad University
چکیده [English]

There are many researches and contributions on stress analysis of tunnel’s roof and wall. But there is not enough research on invert stress analysis, especially in soft grounds. In this paper it has been tried to introduce an analytical model for prediction and calculation of invert up-lift pressure in soil and very poor quality rock mass. Figure 1 shows the problem under tunnel’s structures. When the pressure is high tunnel designer must be considered an invert structure for control of instability under tunnel lining.
The pressure can be occurred by swelling process in some rocks and soils with high value clay content when there is a variation in moisture. But this research has been focused on invert up-lift pressure just by field stress and geomechanics conditions. Stress concentration and pore pressure have been considered in the equilibrium limit analysis and Mohr-Columb failure criterion has been applied as a linear well-known formulation for soils and very jointed rock masses behavior.

کلیدواژه‌ها [English]

  • Tunnel invert up-lift pressure
  • Equilibrium limit analysis
  • Stress concentration
  1. منابع

    1. Huder J., Amberg, G., “Quellung im Mergel, Opalinuston und Anhydrit, Schweiz. Bauzeitung”, 43, pp. 975-980 (1970).
    2. Gysel, M., “A contribution to the design of a tunnel lining in swelling rock”, Rock Mechanics, 10(1), pp. 55-71 (1977).
    3. Serón, J., Garrido, E., Romana, M., “Characterization of swelling rocks by huder-amberg oedometric test”, Paramètres de calcul géotechnique, Magnan (ed.), Presses de l’ENPC/LCPC, Paris, pp. 161-166 (2002).
    4. Kovari K., Amstad I., Anagnostou G., “Design construction methods-Tunneling in swelling rocks”, Key Questions in Road Mechanics. U.S. Rock Mechanics Symposium. Balkema, pp. 17-32 (1988).
    5. Kitzler,  C.,  Walter,  H., “Geotechnical  measurements  in  swelling  rock  –  instrumentation  of  exploratory headings, results, conclusions. 2nd Colloquium “Rock Mechanics – Theory and Practice”, pp. 117-128 (2004).
    6. Berdugo, I.R., Pérez, E.A., Morales, E.R., Solé, A.G. “Tunneling and Swelling in Triassic Sulphate–Bearing Rocks”, Part I - Case studies from Baden–Württemberg. Revista Épsilon, enero-junio de, 12, pp. 13-37 (2009).
    7. Wittke, W. & Ribler, P., “Dimensioning of the lining of underground openings in swelling rock applying the finite element method”, Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction, RWTH (University), Aachen, 2, pp. 7-46 (1976).
    8. Anagnostou, G., “Importance of unsaturated flow in predicting the deformations around tunnels in swelling rock,  Porous  and  Fractured  Unsaturated  Media, Transports  and  Behavior,  Scientific  Colloquium”,  Monte Verita, pp. 343-359 (1992).
    9. Wittke-Gattermann, P., Wittke, M., “Computation of Strains and Pressures for Tunnels in Swelling Rocks” Tunnelling and Underground Space Technology, 19, pp. 422-423 (2004).
    10. Wittke, W., Wittke, M., “Design, construction and supervision of tunnels in swelling rock” ITA-AITES World Tunnel Congress and 31th General Assembly, Istanbul, pp. 1173-1178 (2005).
    11. Mashimo, H., “Analytical investigation of damaged tunnel linings by the action of excessive earth pressure”, ITA-AITES World Tunnel Congress and 33th General Assembly, Prague, pp. 1931-1936 (2007).
    12. Butscher, C., Huggenberger, P., Zechner, E., Einstein, H.H., “Relation between hydrogeological setting and swelling potential of clay-sulfate rocks in tunneling” Engineering Geology, 122, pp. 204-214 (2011).
    13. Steiner, W., Kaiser, P.K., Spaun, G., “Role of brittle fracture on swelling behaviour: evidence from tunnelling case histories”, Geomechanics and Tunnelling, 4(2), pp. 17-32 (2011).
    14. Kim,  K.J.,  Koh,  S.Y.,  Choo,  S.Y.,  Hong,  C.S.,  Hwang,  D.J., “A  study  of  the  invert  tunnel’s  behavior  in  a weathered-rock using laboratory model test and numerical analysis” ITA-AITES World Tunnel Congress and 33th General Assembly, Prague, pp. 501-506 (2007).
    15. Seki,  S.,  Kaise,  S.,  Morisaki,  Y.,  Azetaka,  S.,  Jiang,  Y.,  “Model  experiments  for  examining  heaving phenomenon in tunnels”, Tunnelling and Underground Space Technology, 23, pp.128-138 (2008).
    16. Shimamoto, K., Yashiro, K., Kojima, Y., Nakanishi, Y., Tsukada, K., Asakura, T., “Study on the Mechanisms of  Heaving  and  its  Countermeasures  in  Mountain  Tunnels”,  ITA-AITES  World  Tunnel  Congress  and  38th General Assembly, Bangkok, pp. 1-8 (2012).
    17. Rauh,  F.,  Thuro,  K., “Investigations  on  the  swelling  behavior  of  pure  anhydrites”,  Proceedings  of  the  1st Canada-US Rock Mechanics Symposium, Vancouver, Canada, pp. 27-31 (2007).
    18. Lee, C.H., Wang, T.T., Sun, L.J., Huang, T.H., “Invert heaving in operational tunnels-problems and countermeasures”, World Tunnel Congress, Geneva, Taylor & Francis Group, pp. 770-777 (2013).
    19. Iwai,  T., “Earthquake  disaster  and  restoration  of  mountain  tunnels  in  Japan”  Tunnel  Engineering  Geology Treatment Technology, pp. 173-205 (2000).
    20. Amberg,  W.,  Russo,  M., “Seismic  Design  of  Underground  Structures  the  Bolu  Tunnel”  ITA-AITES  World Tunnel Congress and 27th General Assembly, Milan, pp. 137-145 (2001).
    21. Asakura,  T.,  Tsukada,  K.,  Matsunaga,  T.,  Matsuoka,  S.,  Yashiro,  K.,  Shiba,  Y.,  Oya,  T., “Damage  to Mountain Tunnels by Earthquake and its Mechanism”, The EIT-JAPAN-AIT Joint Workshop “Geo-Risk Engineering & Management” (2005).
    22. Li, G.Y., “The karst area tunnel invert cracking remediation”, Railway Standard Design, pp. 68-71 (2007).
    23. Mothersille, D., Littlejohn, S., “Grouting of Anchors to Resist Hydrostatic Uplift at Burnley Tunnel”, Melbourne, Australia. 4th International Conference on Grouting and Deep Mixing, pp. 1-10 (2012).
    24. Kovári,  K., “Design  Methods  with  Yielding  Support  in  Squeezing  and  Swelling  Rocks”,  ITA-AITES  World Tunnel Congress and 35th General Assembly, Budapest, pp. 1-13 (2009).
    25. Tsimbaryeritch, P.M., “Voprosi davleniya gornykh porod”, (i.e. Questions of rock pressures), Moscow (1952).
    26. Ramamurthy, T., “Engineering in rocks for slopes, foundations and tunnels”, Prentice-Hall of India (2007).
    27. Goodman, R.E., “Rock Mechanics”, Second Edition, John Wiley & Sons (1989).
    28. Bray, J.W., “A study of jointed and fractured rock II, Theory of limiting equilibrium”, Felsmechanik & Ingenieurgeologie (Rock Mechanics and Engineering Geology), 5, pp. 197-216 (1967).
    29. Bowles, J.E., “Foundation analysis and design”, Fifth  Edition, McGraw-Hill (1997).
    30. Hoek, E. & Brown, E.T., “Underground excavations in rock”, IMM (1980).
    31. AASHTO (American Association of State Highway and Transportation Officials), (2002). “Standard Specifications for Highway Bridges”, 17th Edition.