نوع مقاله: علمی - پژوهشی

نویسندگان

1 عضو هیات علمی گروه مهندسی معدن، دانشکده فنی مهندسی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشجوی کارشناسی ارشد، گروه مهندسی معدن، دانشکده فنی مهندسی، دانشگاه ارومیه، ارومیه، ایران.

3 کارشناسی مهندسی معدن، دانشکده فنی مهندسی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

با وجود اهمیت زیاد زغال‌سنگ در توسعه‌ی اقتصادی کشورها، مخاطرات شغلی و سلامتی مرتبط با تولید آن در کارگران معدن یکی از نگرانی‌های اساسی دست‌اندرکاران این زمینه است. شناخت عوامل موثر در ایجاد مخاطرات شغلی معادن زیرزمینی زغال‌سنگ می‌تواند مانع از خسارات جبران‌ناپذیر جانی و مالی شود. در این تحقیق، نخست، عوامل موثر بر ایجاد مخاطرات شغلی معادن زیرزمینی زغال‌سنگ ایران شناسایی شد. سپس، اثرات مستقیم و متقابل این عوامل در ایجاد مخاطرات معادن زیرزمینی زغال‌سنگ با استفاده از روش نقشه‌شناختی فازی بر اساس رویکرد تحلیل اثرات متقابل علت و معلولی بین عوامل ارزیابی و تعیین شد. نتایج بیانگر آن بود که غلظت گرد و غبار، سهل‌انگاری‌ها و اشتباهات فردی و تهویه نامناسب و ناکافی، اشتباهات طراحی، برنامه‌ریزی و اجرایی و حجم و غلظت گاز متان به ترتیب مهمترین عوامل موثر در ایجاد مخاطرات شغلی در معادن زیرزمینی زغال‌سنگ ایران هستند. بررسی آماری حوادث معادن زغال‌سنگ ایران به‌ویژه حوادث اخیر تا حدود زیادی تاییدکننده نتایج این تحقیق است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the impacts of challenging factors on underground colliery occupational hazards in Iran using fuzzy cause and effect interaction

نویسندگان [English]

  • Ezzeddin Bakhtavar 1
  • Mojtaba Shahmoradi 2
  • Sara Rahmati 3

1 Faculty Member, Department of Mining Engineering, Urmia University, Urmia, Iran.

2 Masters Degree Student, Department of Mining Engineering, Urmia University, Urmia, Iran.

3 Bachelor of Science, Department of Mining Engineering, Urmia University, Urmia, Iran.

چکیده [English]

The occupational and health hazards associated with working in coal mines are known as the main concerns despite the high importance of coal production in the economic development of countries. Irreparable damages to personal and financial losses can be avoided if the effective factors result in the occupational risks of underground coal mines are identified. In this research, these factors were initially identified in the case of underground coal mines in Iran. Then, the direct and interaction effects of the identified factors were evaluated and determined using fuzzy cognitive map approach that is based on the analysis of the cause and effect interaction between the identified effective factors. Results indicated that dust concentration, individual negligence and mistakes, inappropriate and inadequate ventilation, errors in design, planning, and execution, and the volume and concentration of methane gas are respectively determined the important factors caused the occupational hazards in the underground coal mines of Iran. The statistical study of the accidents occurred in Iran's underground coal mines, especially recent events, confirms the results of this research.

کلیدواژه‌ها [English]

  • Occupational hazards
  • fuzzy cognitive map
  • cause and effect interaction
  • underground coal mines

منابع و مراجع

[1] بهرفتار، سمیه؛ حسینی، محمدفاروق.؛ بخت‌آور، عزالدین؛ 1389؛ "اولویت‌بندی حوادث رخ‌داده در معادن زغال‌سنگ البرز شرقی با استفاده از روش RPN"، نشریه علمی- پژوهشی مهندسی معدن، 5، 10، 73-79.

[2] Hull, B. P., Leigh, J., Driscoll, T. R., & Mandryk, J; 1996; “Factors associated with occupational injury severity in the New South Wales underground coal mining industry”, Safety Science, 21(3), 191-204.

[3] Maiti, J., & Bhattacherjee, A; 1999; “Evaluation of risk of occupational injuries among underground coal mine workers through multinomial logit analysis”, Journal of Safety Research, 30(2), 93-101.

[4] Van Wijk, J., Latilla, J., Wevell, E., & Neal, D; 2002, August; “Development of a risk rating system for use in underground coal mining”, In Proceedings of the 21st International Conference on Ground Control in Mining, Morgantown, WV(pp. 310-313).

[5] Maiti, J; 2003; “Development of risk indices for underground coal mine workers in India”, Mining Technology, 112(2), 119-124.

[6] Kniesner, T. J., & Leeth, J. D; 2004; “Data mining mining data: MSHA enforcement efforts, underground coal mine safety, and new health policy implications”, Journal of Risk and Uncertainty, 29(2), 83-111.

[7] Sari, M., Duzgun, H. S. B., Karpuz, C., & Selcuk, A. S; 2004; “Accident analysis of two Turkish underground coal mines”, Safety Science, 42(8), 675-690.

[8] Shahriar, K., Bakhtavar, E., & Saeedi, G; 2006, June; “Statistical analysis and risk assessment of working accidents at the Kerman Coal Mines”, In Proc. 15th Turkish Coal Congress (pp. 181-187).

[9] Coleman, P. J., & Kerkering, J. C; 2007; “Measuring mining safety with injury statistics: Lost workdays as indicators of risk”, Journal of safety research, 38(5), 523-533.

[10] Shahriar, K., & Bakhtavar, E; 2009; “Geotechnical risks in underground coal mines”, Journal of Applied Sciences, 9(11), 2137-2143.

[11] Oraee, S., Yazdani-Chamzini, A., & Basiri, M; 2011; “Evaluating underground mining hazards by fuzzy FMEA”, a, a, 1(2), 3.

[12] Stojadinović, S., Svrkota, I., Petrović, D., Denić, M., Pantović, R., & Milić, V; 2012; “Mining injuries in Serbian underground coal mines–a 10-year study”, Injury, 43(12), 2001-2005.

[13] Badri, A., Nadeau, S., & Gbodossou, A; 2013; “A new practical approach to risk management for underground mining project in Quebec”, Journal of Loss Prevention in the Process Industries, 26(6), 1145-1158.

[14] Onder, S; 2013; “Evaluation of occupational injuries with lost days among opencast coal mine workers through logistic regression models”, Safety science, 59, 86-92.

[15] Asfaw, A., Mark, C., & Pana-Cryan, R; 2013; “Profitability and occupational injuries in US underground coal mines”, Accident Analysis & Prevention, 50, 778-786.

[16] Ghasemi, E., & Ataei, M; 2013; “Application of fuzzy logic for predicting roof fall rate in coal mines”, Neural Computing and Applications, 22(1), 311-321.

[17] Onder, M., Onder, S., & Adiguzel, E; 2014; “Applying hierarchical loglinear models to nonfatal underground coal mine accidents for safety management”, International journal of occupational safety and ergonomics, 20(2), 239-248.

[18] Mahdevari, S., Shahriar, K., & Esfahanipour, A; 2014; “Human health and safety risks management in underground coal mines using fuzzy TOPSIS”, Science of the Total Environment, 488, 85-99.

[19] Zhang, P., Peterson, S., Neilans, D., Wade, S., McGrady, R., & Pugh, J; 2016; “Geotechnical risk management to prevent coal outburst in room-and-pillar mining”, International journal of mining science and technology, 26(1), 9-18.

[20] Mark, C., & Gauna, M; 2016; “Evaluating the risk of coal bursts in underground coal mines”, International journal of mining science and technology, 26(1), 47-52.

[21] Bagherpour, R., Yarahmadi, R., & Khademian, A; 2015; “Safety Risk Assessment of Iran's underground coal mines based on preventive and preparative measures”, Human and Ecological Risk Assessment: An International Journal, 21(8), 2223-2238.

[22] Wang, Q., Wang, H., & Qi, Z; 2016; “An application of nonlinear fuzzy analytic hierarchy process in safety evaluation of coal mine”, Safety science, 86, 78-87.

[23] Mohseni, M., & Ataei, M; 2016; “Risk prediction based on a time series case study: Tazareh coal mine”, Journal of Mining and Environment, 7(1), 127-134.

[24] Behraftar S, Hossaini MF, Bakhtavar E; 2017; “MRPN technique for assessment of working risks in underground coal mines”, Journal of the Geological Society of India, (Accepted).

[25] Papageorgiou, E. I., & Salmeron, J. L; 2014; “Methods and algorithms for fuzzy cognitive map-based modeling”, In Fuzzy cognitive maps for applied sciences and engineering, (pp. 1-28), Springer Berlin Heidelberg.

[26] Kosko, B; 1986; “Fuzzy cognitive maps”, International journal of man-machine studies, 24(1), 65-75.

[27] Papageorgiou, E. I; 2012; “Learning algorithms for fuzzy cognitive maps—a review study”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 150-163.

[28] Alizadeh, S., Ghazanfari, M., Jafari, M., & Hooshmand, S; 2007; “Learning FCM by tabu search”, International Journal of Computer Science, 2(2), 142-149.

[29] Stylios, C. D., & Groumpos, P. P. (2004). “Modeling complex systems using fuzzy cognitive maps.” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(1), 155-162.

[30] Lewis, W. H; 1986; “Underground coal mine lighting handbook (in two parts)”.

[31] Groves, W. A., Kecojevic, V. J., & Komljenovic, D; 2007; “Analysis of fatalities and injuries involving mining equipment”. Journal of safety research, 38(4), 461-470.

[32] Burgess-Limerick, R; 2011; “Injuries associated with underground coal mining equipment in Australia”. Ergonomics Open Journal, 4, 62-73.

[33] کارگروه تخصصی استخراج؛ 1386؛ "مقررات فنی مواد منفجره و آتشباری در معادن"، نشریه شماره 410، معاونت برنامه‌ریزی و نظارت راهبردی و وزارت صنایع و معادن.

[34] میرزایی، مهدی؛ کرم‌پوری، فاطمه؛ ایرانمنش، مهدی؛ ۱۳۹۲؛ "بررسی پارامترهای زمین‌شناسی موثر بر ریزش‌های معدنی: مطالعه مورد ریزش کارگاهی در معدن زغال‌سنگ داربیدخون"، هشتمین همایش انجمن زمین‌شناسی مهندسی و محیط زیست ایران، مشهد، دانشگاه فردوسی مشهد.

[35] Shahriar, K., Oraee, K., & Bakhtavar, E; 2009, July; “Roof Falls: An Inherent Risk in Underground Coal Mining”, In Proc. 28th International Conference on Ground Control in Mining West Virginia, USA.

[36] Hartman, H. L., Mutmansky, J. M., Ramani, R. V., & Wang, Y. J; 2012; “Mine ventilation and air conditioning”. John Wiley & Sons.

[37] Kissell, F. N; 2006; “Handbook for Methane Control in Mining”. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health.

[38] Kissell, F. N; 2003; “Handbook for dust control in mining”. (Vol. 9465). US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory.