تعیین مناطق آنومال ژئوشیمیایی با استفاده از مدل‌سازی آمارۀ U مقادیر فاکتور اصلی چندعنصری (U-PCA) مرتبط با کانی‌سازی طلای پهنه‌های برشی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار دانشگاه محقق‌اردبیلی، دانشکدۀ فنی و مهندسی

2 استادیار مجتمع آموزش عالی گناباد، گروه مهندسی معدن،

چکیده

هدف اصلی تجزیه و تحلیل داده‌های ژئوشیمیایی رسوبات آبراهه‌ای، شناسایی مناطق آنومالی ژئوشیمیایی است. در این مقاله برای ترسیم مناطق با پتانسیل کانی‌سازی طلای پهنه‌های برشی، از روش جدید تلفیقی بر پایۀ روش‌های تحلیل مؤلفه‌های اصلی و آمارۀ فضایی U استفاده شده است. در ابتدا روش PCA به عنوان یک روش کاهش ابعاد چند متغیره، برای استخراج ویژگی‌های ژئوشیمیایی و شناسایی عناصر پاراژنز کانی‌سازی طلای پهنه‌های برشی منطقۀ سقز استان کردستان بکار گرفته شد. فاکتور اصلی کانی‌سازی بر اساس ماتریس اصلی چرخشی، تعیین گردید و عناصر پاراژنز W, As, Sb و Sn مرتبط با فرآیند کانی‌سازی شناسایی شد. جهت افزایش موفقیت اکتشاف و شدت بخشی به هاله‌های ژئوشیمیایی، مولفۀ کانی‌سازی چند عنصری حاصل از روش PCA مدل‌سازی شد. سپس روش آمارۀ فضایی U بر روی مولفۀ اصلی کانی‌سازی پیاده‌سازی شد تا اهداف کانی‌سازی چند عنصری تعیین شده و جوامع ژئوشیمیایی مشخص و ترسیم گردد. با استفاده از این سناریو که در این پژوهش به عنوان یک روش مدل‌سازی جوامع ژئوشیمیایی بنام U-PCA مطرح شد، مناطق آنومال کانی‌سازی طلای پهنه‌های برشی با دقت بیشتری تعیین گردید. از میان چهار کانسار و دو اندیس معرفی شده توسط عملیات اکتشافات محلی و ناحیه‌ای سازمان زمین‌شناسی و اکتشافات معدنی کشور، تعداد 5 زون به خوبی شناسایی شدند. در کنار این روش، روش مرسوم آمارۀ فضایی U نیز بر روی داده‌های عنصر طلا پیاده‌سازی شد و نتایج آن با یکدیگر مقایسه گردید. روش تلفیقی جدید نرخ پیش‌بینی اکتشافی را افزایش داد و نتایج بسیار مناسب‌تری را برای تعیین مناطق پتانسیل کانی‌سازی نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of geochemical anomalous areas using U-statistics modeling of multi-element principal factor values (U-PCA) related to gold mineralization of shear zone

نویسندگان [English]

  • Mirmahdi Seyedrahimi-Niaraq 1
  • Hossein Mahdiyanfar 2
1 University of Mohaghegh Ardabili, Ardabil, Iran
2 Ghonabad University
چکیده [English]

Identification of geochemical anomaly areas is a major aim in analyzing the stream sedimentary geochemical data. In this paper, a novel integrated method based on the principal component analysis (PCA) and U- statistical method has been used for Au mineral potential mapping in the Saghez area. Firstly, the PCA as a multivariate dimension reduction method has been applied for extracting the multivariate geochemical signatures and detecting the paragenesis elements in the Saqqez sheared gold mineralization area. The mineralization principal factor was determined based on the rotated component matrix and the paragenesis elements of Sn, W, As and Sb relevant to the ore-forming process were identified. The obtained mineralization principal factor calculated based PCA method has been modeled for increasing the exploration success and enhancing the geochemical halos. For mapping the multi-element mineralization targets, the U statistical method was applied on the mineralization principal factor and the geochemical populations were obtained and delineated. This scenario as a geochemical population modeling method properly could mapped the sheer Au anomaly areas and 5 mineralization zones amongst the 6 Au occurrences were identified. The conventional U spatial method has also been utilized on the Au element and the obtained geochemical sub-populations were interpreted and the geochemical anomalies were mapped. Finally, the U-values modeling of mineralization principal factor was compared to the results of U spatial statistical method of Au elements. The novel proposed approach enhanced the exploratory prediction rate and displayed more proper results for mineral potential mapping.

کلیدواژه‌ها [English]

  • U-statistical modelling
  • principal component analysis
  • anomaly separation
  • Shear gold mineralization
منابع Liu, Y., Zhou, K., Cheng, Q., 2017. A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Comput. Geosci. 105, 139–147## Ghezelbash, R., Maghsoudi, A., Daviran, M., & Yilmaz, H., 2019. Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran. Geochemistry, 79(2), 323-336.## Yousefi, M., Carranza, E. J. M., 2015a. Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.## Zuo, R., Wang, J., 2016. Fractal/multifractal modeling of geochemical data: a review. J. Geochem. Explor. 164, 33–41.## Ghezelbash, R., Maghsoudi, A., 2018. Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. C. R. Geosci. 350 (4), 180–191.## Carranza, E.J.M., 2009. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis 10, 171–187.## Zuo, R., Cheng, Q., Agterberg, F.P., 2009. Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geology Reviews 35, 101–108.## Zuo, R., Cheng, Q., Agterberg, F.P., Xia, Q., 2009. Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration 101, 225–235## Carranza, E.J.M., 2010. Catchment basin modeling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis 10, 365–381.## Grunsky, E.C., 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis 10, 27–74.## Cheng, Q., Bonham-Carter, G.F., Wang, W., Zhang, S., Li, W., Xia, Q., 2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers and Geosciences 5, 662–669.## Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 51, 109–130.## Zuo, R., Wang, J., Chen, G., Yang, M., 2015. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 148, 12–24.## Aliyari, F., Afzal, P., Lotfi, M., Shokri, S. and Feizi, H., 2020. Delineation of geochemical haloes using the developed zonality index model by multivariate and fractal analysis in the Cu–Mo porphyry deposits. Applied Geochemistry, 121, p.104694.## Shahbazi, S., Ghaderi, M., Afzal, P., 2021. Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences 13, 31-40.## Cheng, Q., 1999, Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical exploration, 65: 175-194.## Ghavami-Riabi, R., Seyedrahimi-Niaraq, M.M., Khalokakaie, R., Hezareh, M.R., 2010, U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits, Journal of Geochemical Exploration, 104, 27–33.## سیدرحیمی‌نیارق، م.م.، مهدیانفر، ح.، مدل‌سازی فرکتالی طیف توان داده های طیفی آمارۀ U برای جداسازی مناطق آنومال ژئوشیمیایی مس پورفیری، نشریۀ علمی پژوهشی مهندسی معدن، دورۀ شانزدهم، شمارۀ پنجاه، 72-59 ص.## Stanley, C.R., Sinclair, A.J., 1991. A fundamental approach to threshold estimation inexploration geochemistry, probability plots revisited. J. Geochem. Explor. 41, 1–22.## Ghavami-Riabi, R., 2008. Detection of concealed Cu–Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province, South Africa. J. Geochem. Explor. 97, 83–101.## Seyedrahimi-Niaraq, M., Hekmatnejad, A., 2021. The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochimica, https://doi.org/10.1007/s11631-020-00413-7.## Cheng, Q., Agterberg, F. and Bonham-Carter, G., 1996, A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56: 183-195.## Lin, Y.P., (2002). Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals. Environ. Geol. 42, 1–10.## Zuo, R., Cheng, Q. and Xia, Q., 2009, Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration, 102: 37-43.## Chandrajith, R., Dissanayake, C.B., Tobschall, H.J., 2001. Application of multi-element relationships in stream sediments to mineral exploration: a case study of Walawe Ganga Basin, Sri Lanka. Applied Geochemistry 16, 339–350.## Grunsky, E.C., Drew, L.J., Sutphin, D.M., 2009. Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry 24, 1602–1616.## Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M., 2019b. Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. Journal of Geochemical Exploration, 199, 90-104.## Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M., 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.## Saadati, H., Afzal, P., Torshian, H., Solgi, A., 2020. Geochemical exploration for Li using Geochemical Mapping Prospectivity Index (GMPI), fractal and Stage Factor Analysis (SFA) in NE Iran. Geochemistry: Exploration, Environment, Analysis 20, 461-472.## Sadeghi, B., Yilmaz, H., & Pirajno, F. (2021). Weighting of BLEG data with drainage and catchment properties to enhance Au anomalies. Geochemistry, 81(2), 125733.## Carranza, E.J.M., 2008. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Vol. 11 Elsevier.## Zuo, R., 2011b. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum –area.## Farzamian, M., Rouhani, A. K., Yarmohammadi, A., Shahi, H., Sabokbar, H. F., Ziaiie, M., 2016. A weighted fuzzy aggregation GIS model in the integration of geophysical data with geochemical and geological data for Pb–Zn exploration in Takab area, NW Iran. Arabian Journal of Geosciences, 9(2), 104.## Muller, J., Kylander, M., Martinez-Cortizas, A., Wüst, R.A., Weiss, D., Blake, K., et al., 2008. The use of principle component analyses in characterising trace and major elemental distribution in a 55kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim. Cosmochim. Acta 72 (2), 449–463.## Shahi, H., Ghavami, R., & Rouhani, A. K., 2016. Comparison of mineralization pattern of geochemical data in spatial and position-scale domain using new DWT-PCA approach. Journal of the Geological Society of India, 88(2), 235-244.## Ghezelbash, R., Maghsoudi, A., Daviran, M., 2019. Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochim. 38 (1), 131–144.## Mahdiyanfar, H., 2020. A critique on power spectrum–area fractal method for geochemical anomaly mapping. Journal of Analytical and Numerical Methods in Mining Engineering, 10(25), 33-41.## Cevik, I. S., Olivo, G. R., & Ortiz, J. M., 2021. A combined multivariate approach analyzing geochemical data for knowledge discovery: The Vazante–Paracatu Zinc District, Minas Gerais, Brazil. Journal of Geochemical Exploration, 221, 106696.## Behera, S., & Panigrahi, M. K., 2021. Mineral prospectivity modelling using singularity mapping and multifractal analysis of stream sediment geochemical data from the auriferous Hutti-Maski schist belt, S. India. Ore Geology Reviews, 104029.## Shahi, H., Ghavami, R., Rouhani, A. K., Kahoo, A. R., & Haroni, H. A., 2015. Application of Fourier and wavelet approaches for identification of geochemical anomalies. Journal of African Earth Sciences, 106, 118-128.## حیدری، س.م.، 1383، کانی‌شناسی، ژئوشیمی و فابریک کانه زایی طلا در پهنه‌برشی خمیری منطقه کرویان، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، 150ص.## حریری، ع.، 1382، گزارش نقشه زمین‌شناسی ورقه 100000/1 سقز، سازمان زمین‌شناسی و اکتشافات معدنی کشور، ایران.## Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003, Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran, Journal of Asian Earth Science, 21, 397-412.## حسنی‌پاک، ع.ا.، 1378، اکتشافات ژئوشیمیایی سیستماتیک در محدوده برگه 1:100000 آلوت در غرب برگه 1:100000 سقز، سازمان زمین‌شناسی و اکتشافات معدنی کشور.## افتخارنژاد، ا.، نقشه زمین‌شناسی 1:250000 مهاباد، 1352، سازمان زمین شناسی و اکتشافات معدنی کشور.## ابوالمعالی، ش.د.، علوی، م.، ذعیم‌فرحزاری، ن.، 1377، گزارش اکتشافات ژئوشیمیایی سیستماتیک در محدوده برگه1:100000سقز، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.## مهدی‌زاده، س.، 1377، مطالعات دورسنجی مقدماتی در ورقه 1:100000 سقز به منظور شناسایی و جداسازی واحدهای سنگی مختلف بویژه واحدهای دگرسانی، سازمان زمین‌شناسی و اکتشافات معدنی کشور.## دانشفر، ب.، گیاهچی، پ.، زعیم فرحزاری، ن.، 1377،تهیۀ نقشه های مقدماتی پتانسیل مواد معدنی در گسترۀ ورقۀ سقز با مقیاس 1:100000 با بهره گیری از سیستم های اطلاعات جغرافیایی GIS، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.## سیدرحیمی نیارق، م. م.، 1387، تفکیک آنومالیهای ژئوشیمیایی با استفاده از روش‌های فرکتال و آمار فضایی U و مقایسه نتایج آن با روش مدل‌سازی نمودارهای احتمال، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود، 148 ص.## قوامی‌ریابی، ر.، سیدرحیمی‌نیارق، م.م.، خالوکاکایی، ر.، هزاره، م.ر.، 1389، رفتار و اختصاصات ژئوشیمیایی مناطق کانی سازی طلای پهنه‌های برشی کردستان، نشریۀ علمی پژوهشی مهندسی معدن، دورۀ پنجم، شمارۀ نهم، 36-27 ص.## Jolliffe, I.T., 2002. Principal component analysis. Springer, Berlin.## Iwamori, H., Yoshida, K., Nakamura, H., Kuwatani, T., Hamada, M., Haraguchi, S., & Ueki, K., 2017. Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. Geochemistry, Geophysics, Geosystems, 18(3), 994-1012.## Garcia, R. J. L., da Silva Júnior, J. B., Abreu, I. M., Soares, S. A. R., Araujo, R. G. O., de Souza, E. S., ... & de Souza Queiroz, A. F. (2020). Application of PCA and HCA in geochemical parameters to distinguish depositional paleoenvironments from source rocks. Journal of South American Earth Sciences, 103, 102734.## Landis, M. S., J. P. Pancras, J. R. Graney, R. K. Stevens, K. E. Percy, and S. Krupa., 2012. "Receptor modeling of epiphytic lichens to elucidate the sources and spatial distribution of inorganic air pollution in the Athabasca Oil Sands Region." In Developments in Environmental Science, vol. 11, pp. 427-467.## Ghavami-Riabi, R., Seyedrahimi-Niaraq, M. M., Khalokakaie, R., & Hazareh, M. R., 2010. U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. Journal of Geochemical Exploration, 104(1-2), 27-33.## Harmon, H.H., 1976. Modern Factor Analysis, third ed. rev. University of Chicago Press, Chicago, IL.## Eilu, P., Groves, D., 2001, Primary alteration and geochemical dispersion haloes of Archaean orogenic gold deposits in the Yilgarn Craton: the pre-weathering scenario. Geochemistry: Exploration, Environment, Analysis, 1: 183-200.## Killick, Andy; (2003); "Shear zone- hosted gold deposits"; The Mineral Corporation.## Kaiser, H. F., 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200. doi: 10.1007/BF02289233## Hopke, P.K., 1983. An Introduction to multivariate analysis of environmental data. In: Natusch, D.F.S., Hopke, P.K. (Eds.), Analytical Aspects of Environmental Chemistry. Wiley, New York, pp. 219–261.##