پراکندگی و سطح ریسک فلزات سرب و روی در خاک های اطراف معدن آهنگران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار گروه زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا همدان

2 دکترای زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا همدان

3 کارشناس ارشد زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا همدان

چکیده

دسترسی زیستی1 عناصر مضر بالقوه مانند فلزات سنگین در بسیاری از مطالعات نادیده گرفته شده و بیشتر بررسی‌ها بر اساس غلظت کل انجام می‌شود. با توجه به اینکه میزان غلظت کل فلزات، در بیشتر موارد اطلاعات محدودی را در مورد تحرک و زیست فراهمی فلزات سنگین نشان می‌دهد بنابراین غلظت بخشی یا عصاره‌گیری، بهترین روش در تخمین مقدار و نسبت فلزات در خاک می‌باشد. در این پژوهش در مجموع تعداد 40 نمونه از خاکهای سطحی اطراف معدن، باطله معدنی و زمین کشاورزی اطراف معدن آهنگران برداشت شد. غلظت کل عنصر سرب و روی توسط ICP-AES و بخش دسترسی زیستی با استفاده از روش تک مرحله ای توسط اسید کلریدریک 1/0 نرمال توسط دستگاه جذب اتمی (AAS) تعیین گردید. نتایج فاکتور آلودگی (CF) عنصر سرب برای باطله‌های معدنی، اطراف معدن بیانگر آلودگی بسیار زیاد و برای زمین‌های کشاورزی آلودگی متوسط می‌باشد. مقدار CF عنصر روی برای باطله‌های معدنی نشاندهنده آلودگی بسیار زیاد و برای سایر مناطق متوسط بوده است. شاخص بار آلودگی (PLI) نشان داد که عناصر در اطراف معدن و باطله معدنی دارای درجه آلودگی شدید و در زمین کشاورزی درجه آلودگی کم است. کد ارزیابی خطر (RAC) که براساس میزان دسترسی زیستی دو عنصر روی و سرب محاسبه شد، برای عنصر روی در تمام مناطق در گروه خطر متوسط و برای عنصر سرب (به جز محدوده زمین کشاورزی) در گروه خطر کم قرار گرفت. پایین بودن مقادیر دسترسی زیستی نشان دهنده حضور فلزات سرب و روی در فاز باقیمانده (به شکل کانی) می‌باشد که خطر زیادی برای موجودات زنده ندارد. افزایش مقادیر دسترسی زیستی در خاک‌های کشاورزی که در فواصل دورتری از معدن قرار گرفته‌اند بیانگر حضور بیشتر این فلزات در فازهای قابل تبادل و متصل به کربنات می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

SPATIAL DISTRIBUTION OF LEAD AND ZINC AND THEIR POTENTIAL RISK LEVELS IN THE SOILS AROUND THE AHANGARAN MINE,

نویسندگان [English]

  • Behrouz Rafiei 1
  • Saeideh Rahmani 2
  • Azam sadat Khodaee 3
1 Dep. of geology, faculty of sciences, Bu-Ali Sina Uni., Hamedan-Iran
2 Dep. of geology, faculty of sciences, Bu-Ali Sina Uni., Hamedan-Iran
3 Dep. of geology, faculty of sciences, Bu-Ali Sina Uni., Hamedan-Iran
چکیده [English]

The bioavailability of potentially harmful elements such as heavy metals has been ignored in many researches, and most studies are conducted based on total concentration. Considering that the total concentration of metals, in most cases, shows limited information about the mobility and bioavailability of heavy metals, therefore, partial concentration or extraction is the best method in estimating the content of metals in soil. In this study, 40 samples were collected from surface soils around the mine, tailing and agricultural soils around the Ahangaran mine. Total concentrations of lead and zinc were determined by ICP-OES, and the bioavailable fraction was carried out by single-stage method extraction (0.1N HCl) using atomic absorption spectroscopy (AAS). The contamination factor (CF) results for Pb in tailing and around the mine areas indicate very high contamination and moderate contamination for agricultural soils. The amount of CF for Zn presents a very high contamination factor in tailings and moderate contamination factor in the other areas. Pollution load index (PLI) values show that the tailings and soils around the mine are extremely polluted, and agricultural soils are moderately polluted. The Risk Assessment Code (RAC), which was calculated based on zinc and lead bioavailability, presented moderate risk for zinc in all study areas and low risk and for Pb (except agricultural soils that show moderate risk). Low bioavailable values indicate the presence of Pb and Zn in the residual phase (in the form of minerals) that do not pose much risk to living organisms. Increasing the amount of bioavailability in agricultural soils located at farther distances from the mine indicates the presence of these metals in carbonate and exchangeable phases

کلیدواژه‌ها [English]

  • Bioavailability
  • Lead and Zinc
  • Ahangaran mine
  • Malayer
#1. Abrahams, P.W.; 2002; “Soils: their implication to human health”. The Science of the Total Environment, 291: 1–32.# #2. Morillo, J., Usero, J., Gracia, I.; 2002; “Partitioning of metals in sediments from the Odiel River (Spain)”. Environ, Inter., 28: 263-271.# #3. Reeve, R.N.; 2002; “Introduction to environmental analysis”. John Wiley & Sons., Vol.5:301.# #4. Bolan, S.N., Adriano, D.C., Naidu, R.; 2003; “Role of Phosphorus in (Im) mobilization and Bioavailability of Heavy Metals in the Soil–Plant System”. Rev Environ Contam Toxicol, 177:1–44. # #5. Kiran, Y.K., Barkat, A., Xiao-qiang, C., Ying, F., Feng-shan, P., Lin, T., Xiao-e, Y.; 2017; “Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil”. Journal of Integrative Agriculture, 16(3):725–734.# #6. Wang, L., Li, Y., Wang, H., Cui, X., Wang, X., Lu, A., Wang, X., Wang, Ch., Gan, D.; 2017; “Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sulfide deposit, Western China”. Journal of Geochemical Exploration, 173(1): 1–12.# #7. Gabarrón, M., Faz, A., Martínez-Martínez, S., Acosta, J.A.; 2018; “Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds”. Journal of Environmental Management, 212: 292-300.# #8. Kaninga, B.K., Chishala, B.H., Maseka, K.K., Sakala, G.M., Lark, M.R., Tye, A., Watts, M.J.; 2019; “Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils”. Environ Geochem Health.# #9. Cheng, X., Danek, T., Drozdova, J., Huang, Q., Qi, W., Zou, L., Yang, S., Zhao, X., Xiang, Y.; 2018; “Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China”. Environ Monit Assess, 190: 194.# #10. ابوییان جهرمی، م.؛ جمشیدی زنجانی، ا.؛ خدادادی دربان، ا.؛ شفیع زاده مقدم، ح؛ 1397: «ارزیابی دسترسی زیستی و انسانی در خاک‌های سطحی معدن باما و روستای مجاور آن به روش استخراج تک مرحله‌ای». مجله مهندسی عمران مدرس، دوره 18، شماره6. ص 26-15.# #11. Rafiei, B., Bakhtiari Nejad, M., Hashemi, M., Khodaei, A.S.; 2010a; “Distribution of Heavy Metals around the Dashkasan Au Mine”. Int. J. Environ, Res., 4(4):647-654.# #12. Yousefi, S., Doulati Ardejani, F., Ziaii, M., Abedi, A., Esmaeil Zadeh, E.; 2015; “Investigating the origin and geochemical behaviour of toxic elements within the waste dumps using statistical analyses: a case study at waste dumps of Sarcheshmeh copper mine, SE of Iran”. Environ Earth Sci 73, 1555–1572.# #13. Yousefi, S., Doulati Ardejani, F., Ziaii, M., Esmaeil Zadeh, E., Abedi, A.; 2013; “Identification of the Origin and Behaviour of Arsenic in Mine Waste Dumps Using Correlation Analysis: A Case Study Sarcheshmeh Copper Mine”. Int. J. Min.& Geo-Eng, 47(2): 139-149.# #14. Jodeiri Shokri, B., Dehghani, H., Shamsi, R., Doulati Ardejani, F.; 2020; “Prediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study”. Journal of Mining and Environment, 11(4): 1127-1140.# #15. Doulati Ardejanii, F., Rooki, R., Jodieri Shokri, B., Eslam Kish, T., Aryafar, A., Tourani, P.; 2013; “Prediction of Rare Earth Elements in Neutral Alkaline Mine Drainage from Razi Coal Mine, Golestan Province, Northeast Iran, Using General Regression Neural Network. Journal of Environmental Engineering, 139(6): 896 – 907.# #16. Mehrabi, B., Mehrabani, Sh., Rafiei, B., Yaghoubi, B.; 2015; “Assessment of metal contamination in groundwater and soils in the Ahangaran mining district, west of Iran”. Environ, Monit, Assess., 187:727.# #17. Rafiei, B., Khodaei, A.S., Khodabakhsh, S., Hashemi, M., Bakhtiari Nejad, M.; 2010b; “Contamination Assessment of Lead, Zinc, Copper Cadmium, Arsenic and Antimony in Ahangaran Mine Soils, Malayer, West of Iran”. Soi!t tntl SedinrcntC ontamination, l 9:57i--586.# #18. جعفریان، م. ب.؛ زمانی پدرام، م؛ 1384: «نقشه چهارگوش یکصد هزار ملایر». سازمان زمین شناسی و اکتشافات معدنی کشور.# #19. Lewis, D.W., McConchie, D.; 1994; “Analytical sedimentology”. Chapman and Hall, 197pp.# #20. Segura, R., Arancibia, V., Zuniga, M.C., Pasten, P.; 2006; “Distribution of copper, zinc, lead and cadmium concentration in stream sediments from the Mapocho River in Santiago, Chile”. J. Geochem, Explor, 91:71-80.# #21. Nelson, D. and Sommers, L.; 1996; “Total carbon, inorganic carbon and organic matter”. In: Sparks, D.L. (Ed.): Method of Soil Analysis. Part 3. chemical methods, SSSA book series No. 5. SSSA, Madison, WI, 961-1010.# #22. Sims, J.T.; 1996; “Lime requirement methods of soil analysis, Parts: Chemical methods”. Madison, Wisconsin, USA, 491pp.# #23. Farkas, A., Erratico, C., Vigano, L.; 2007; “Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po” .Chemosphere, 68(4):761-768.# #24. Jeffery, P.G., Hutchinson, P.; 1983; “Chemical Methods of Rock Analysis”. Pergamon, Oxford, 379 pp.# #25. Anjos, C., Magalhães, M.C.F., Abreu, M.M.; 2012; “Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Bracal abandoned lead mine area, Portugal”. J. Geochem., Explor, 113, 45–55.# #26. Krishnamurt, G. S. R., Naidu R.; 2007; “Chemical speciation and bioavailability of trace metals”. In: Biophysico-chemical processes of heavy metals and metalloids in soil environments, John Wiley & Sons, Vol.1:419- 467.# #27. Xu, D., Zhou, P., Zhan, J., Gao, Y., Dou, C., Sun, Q.; 2013; “Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China”. Ecotoxicology and Environmental Safety, 90: 103-111.# #28. Peijnenburg, W.J.G.M., Zablotskaja, M., Vijver, M.G.; 2007; “Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction”. Ecotoxicology and Environmental Safety, 67: 163-179.# #29. Liu M, Li Y, Zhang W, Wang Y.; 2013; “Assessment and Spatial distribution of zinc pollution in agricultural soils of Chaoyang, China”. Procedia Environ Sci., 18: 283-9.# #30. Mondal, P., Reicheit-Brushett, A.J., Jonathan, M.P., Sujitha, S.B., Sarkar, S.K.; 2017; “Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India)”. Environmental Science and Pollution Research.# #31. Massas, I., Ehaliotis, C., Kalivas, D., Panagopoulou, G.; 2010; “Concentrations and Availability Indicators of Soil Heavy Metals; the Case of Children’s Playgrounds in the City of Athens (Greece)”. Water Air Soil Pollut, 212: 51-63.# #32. Hakanson, L.; 1980; “An ecological risk index for aquatic pollution control. A sedimentological approach”. Water research, 14(8): 975-1001.# #33. Darvish Bastami, K., Neyestani, M.R., Molamohyedin, N., Shafeian, E., Haghparast, S., Shirzadi, I.A., Baniamam, M.; 2018; “Bioavailability, mobility, and origination of metals in sediments from Anzali Wetland, Caspian Sea”. Marine Pollution Bulletin, 136. 22- 32.# #34. Yang, J., Cao, L., Wang, J., Liu, C., Huang, C., Cai, W., Fang, H., Peng, X.; 2014; “Speciation of metals and assessment of contamination in surface sediments from Daya Bay, South China Sea”. Sustainability 6, 9096–9113.# #35. Favas, P.J.C., Pratas, J., Gomez, M.E.P., Cala, V.; 2011; “Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity”. Journal of Geochemical Exploration, 111(3): 160–171.# #36. Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., Rincon, J.; 2009; “Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain”. J Environ Manag., 90(2):1106–1116.# #37. Achiba, W.b., Gabteni, N., Lakhdar, A., Laing, G.D., Verloo, M., Jedidi, N., Gallali, T.; 2009; “Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil”. Agriculture, Ecosystems, Environ, 130: 156-163.# #38. Agrawal, J., Sherameti, I., Varma, A.; 2012; “Detoxification of Heavy Metals”. State of Art, PP: 1-34.# #39. Bi X., Feng X., Yang Y., Qiu G., Li G., Li F. , Liu T., Fu Z., Jin Z.; 2006; “Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China”. Environment International, 32:883-890.# #40. Kabata-Pendias, A.; 2011; “Trace Elements in Soils and Plants”. Chemical Rubber Company Press, BocaRaton, Florida, 413 pp.# #41. Kabata-pendias, A., Pendias, H.; 2000; “Trace elements in soils and plants“. CRC Press, Boca Raton, 287p.# #42. Ramos, L., M. Hernandez, M. J., Gonzalez.; 1994; “Sequentional of copper, lead, cadmium and zinc in soils, from or near Donadona National Park”. J. Environ, Qual., 23: 50-57.# #43. Singer, M.J., Hannson, L.; 1969; “Lead accumulation in soils near highways in the twin cities metropolitan area”. Soil Sci. Soc. Am. J., 33, 125-153.# #44. Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P.; 2004; “EDTA-enhanced phytoremediation of heavy metal contaminated soil with India mustard and associated potential leaching risk”. Agric. Ecosystem Environ, 102, 307-318.#