تاثیر شرایط محیطی در تخمین عمر مفید باقیمانده مبتنی بر قابلیت اطمینان در معدن مس سونگون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی معدن، دانشکده معدن،نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

2 استاد، گروه مهندسی معدن، دانشکده معدن،نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود،

3 استادیار، گروه مهندسی معدن، دانشکده فنی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین

4 استاد، دانشکده تکنولوژی و ایمنی، دانشگاه شمالگان ترومسو نروژ

چکیده

ﺗﺨﻤﯿﻦ ﻋﻤﺮ ﺑﺎﻗﯿﻤﺎﻧﺪه ﻣﺎﺷﯿﻦآﻻت در ﺑﺨﺶ ﻣﻌﺪﻧﮑﺎری ﺑﺮای ﺣﺼﻮل اﻃﻤﯿﻨﺎن از ﺗﻮﻟﯿﺪ و رﺿﺎﯾﺖﻣﻨﺪی ﻣﺸﺘﺮی از ﻣﺤﺼﻮل اﻣﺮی ﺿﺮوری اﺳﺖ و از آن ﺑﺎ ﻋﻨﻮان ﻋﻤﺮ ﺑﺎﻗﯿﻤﺎﻧﺪه ﻣﻔﯿﺪ (RUL) ﯾﺎد ﻣﯽﺷﻮد. اﯾﻦ ﻣﻌﯿﺎر ﺑﺮاﺳﺎس ﻗﺎﺑﻠﯿﺖ اﻃﻤﯿﻨﺎن ﻣﺤﺎﺳﺒﻪ ﺷده که متاثر از ﺷﺮاﯾﻂ ﻣﺤﯿﻄﯽ است. تاثیرات شرایط محیطی نیز ﺑﺎ ﻋﻨﻮان "ﻓﺎﮐﺘﻮرﻫﺎی رﯾﺴﮏ" در ﺗﺤﻠﯿﻞ ﻫﺎ وارد ﻣﯽﺷﻮﻧﺪ. در اﯾﻦ ﻣﻘﺎﻟﻪ روﯾﮑﺮدی ﭘﯿﺸﻨﻬﺎد ﺷﺪه اﺳﺖ ﮐﻪ ﺑﺮاﺳﺎس آن ﻧﺨﺴﺖ ﻗﺎﺑﻠﯿﺖ اﻃﻤﯿﻨﺎن ﺳﯿﺴﺘﻢ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﺎﺛﯿﺮ ﻓﺎﮐﺘﻮرﻫﺎی رﯾﺴﮏ ﺑﺮرﺳﯽ و ﺳﭙﺲ RUL ﺑﺮای ﺣﺎﻻت ﻣﺨﺘﻠﻒ ﺗﺨﻤﯿﻦ زده ﻣﯽﺷﻮد. ﻫﻤﭽﻨﯿﻦ ﻋﻤﺮ ﺑﺎﻗﯿﻤﺎﻧﺪه ﻣﻔﯿﺪ ﯾﮏ دﺳﺘﮕﺎه ﺑﯿﻞ ﻣﮑﺎﻧﯿﮑﯽ ﮐﻮﻣﺎﺗﺴﻮ1250- PC از ﻣﻌﺪن ﻣﺲ ﺳﻮﻧﮕﻮن ﺑﻪ ﻋﻨﻮان ﻣﻄﺎﻟﻌﻪ ﻣﻮردی ﺑﺎ اﯾﻦ روﯾﮑﺮد ارزﯾﺎبی شد. در ﻧﺘﯿﺠﻪ ارزﯾﺎﺑﯽ، ﺑﺮ ﻣﺪل ﻧﺮخ ﻣﺨﺎﻃﺮات ﻣﺘﻨﺎﺳﺐ وﯾﺒﻮل ﺑﺮای ﺗﻮﺻﯿﻒ رﻓﺘﺎر ﺧﺮاﺑﯽ ﺑﺮازش شده و ﻋﻤﺮ ﻣﻔﯿﺪ ﺑﺮای ﭼﻬﺎر ﺳﻨﺎرﯾﻮی تصادفی ﻣﺤﺎﺳﺒﻪ ﺷﺪ. ﻧﺘﺎﯾﺞ ﺑﻪدﺳﺖ آﻣﺪه در این تحقیق را ﻣﯽﺗﻮان ﺑﺮای ﺗﻮﺳﻌﻪ، ﺑﺮﻧﺎﻣﻪرﯾﺰی، ﻧﮕﻬﺪاری‌وﺗﻌﻤﯿﺮات ﭘﯿﺸﮕﯿﺮاﻧﻪ، نگهداری‌وتعمیرات مبتنی بر شرایط، تخمین ﺑﺎزهﻫﺎی ﺗﻌﻮﯾﺾ ﻗﻄﻌﺎت ﯾﺪﮐﯽ اﺳﺘﻔﺎده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Operating Environment effect on Remaining Useful Life Case study: Sungun Copper Mine

نویسندگان [English]

  • Awat ghomghale 1
  • reza kakaei 2
  • mohammad Ataei 2
  • ali noori qarahasanlo 3
  • abbas barabadi 4
1 phd student
2 Professor
3 Assistant professor, Faculty of Technical & Engineering, Imam Khomeini International University
4 4Professor, Department of Technology and Safety, UiT the Arctic University of Norway
چکیده [English]

The Remaining Useful Life (RUL) valuation of mining machinery is a principal to ensure the production/output and customer satisfaction in the mining zone. In many cases, it may be of attention to know the expected value of the remaining life of the item before it fails from an arbitrary time that known RUL. The system's failure is also evaluated with the reliability index, which describes up-times. An individual unit's reliability during field use is essential in many mining equipment applications. This index, especially in industrial systems, and being affected by the internal condition also affects operating environmental conditions. For example, the loader performance in cold weather will be different from that of warm, which will affect the machine's reliability and thus the RUL. In reliability engineering, operating environmental conditions are considered "Risk factors or Covariates". Therefore, in this paper, an approach is proposed first to analyze the system's reliability considering covariates' effect and then estimate the RUL for different scenarios. The proportional hazard model was used in reliability analysis to be realistic and take the operational influencing factors in calculation. Methods are presented for calculating the reliability function and computing the RUL as a function of the current conditions to guarantee the desired output. The remaining useful life estimation of a Komatsu PC-1250 from the Sungun copper mine was evaluated as a case study of this approach. Systems operating environmental factors such as shift, dump-truck kind, rock kind, … (known as covariates) are assumed to influence covariate in this context. As a result, the Weibull proportional hazard model was fitted to describe the failure behavior, and the RUL of four selected scenarios was evaluated. Presented results can be used, e.g., for developing operational performance, planning of maintenance activities, spare parts provision, and the profitability of the owner of an asset.

کلیدواژه‌ها [English]

  • Reliability
  • Covariates
  • Remaining useful life
  • Proportional hazard assumption
  • Mining

مراجع 1. B. Rod, A. Barabadi, and M. Naseri, “Recoverability Modeling of Power Distribution Systems Using Accelerated Life Models: Case of Power Cut due to Extreme Weather Events in Norway,” Journal of Management in Engineering, vol. 36, no. 5, p. 05020012, 2020. 2. R. Zaki, A. Barabadi, J. Barabadi, and A. N. Qarahasanlou, “Observed and unobserved heterogeneity in failure data analysis:,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Jun. 2021, doi: 10.1177/1748006X211022538. 3. J. S. Kiddy, “Remaining useful life prediction based on known usage data,” 2003, pp. 11–18. 4. A. Ghomghale, M. Ataei, R. Khalokakaie, A. Barabadi, and A. Nouri Qarahasanlou, “The Application of Frailty Model in Remaining Useful Life Estimation (Case Study: Sungun Copper Mine’s Loading System),” Journal of Modeling in Engineering, vol. 18, no. 62, Oct. 2020, doi: 10.22075/jme.2020.19249.1817. 5. A. Ghomghaleh et al., “Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model,” Plos one, vol. 15, no. 7, p. e0236128, 2020. 6. R. Barabadi, M. Ataei, R. Khalokakaie, and A. Nouri Qarahasanlou, “Spare-part management in a heterogeneous environment,” Plos one, vol. 16, no. 3, p. e0247650, 2021. 7. R. Hall and L. Daneshmend, “Evaluation of mining equipment automation including process considerations and sensitivity analysis,” in Mine Planning and Equipment Selection 2000, Routledge, 2018, pp. 709–713. 8. R. A. Hall and L. K. Daneshmend, “Reliability and maintainability models for mobile underground haulage equipment,” Canadian Institute of Mining, Metallurgy and Petroleum (CIM) bulletin, vol. 96, no. 1072, pp. 159–165, 2003. 9. U. Kumar and B. Klefsjö, “Reliability analysis of hydraulic systems of LHD machines using the power law process model,” Reliability Engineering & System Safety, vol. 35, no. 3, pp. 217–224, 1992, doi: 10.1016/0951-8320(92)90080-5. 10. U. Kumar, “Reliability Analysis of Load-Haul-Dump Machines,” Phd Thesis, Lulea University of Technology, Lulea, Sweden, 1990. 11. N. Vagenas, V. Kazakidis, M. Scoble, and S. Espley, “Applying a maintenance methodology for excavation reliability,” International Journal of Surface Mining, Reclamation and Environment, vol. 17, no. 1, pp. 4–19, 2003. 12. M. M. Grujic, M. M. Grujic, and M. D. Ivkovic, “The impact of multi-element external coal transportation on reliability of the system and on environment,” in Mine Planning and Equipment Selection 2000, Routledge, 2018, pp. 569–572. 13. N. Vagenas, N. Runciman, and S. R. Clément, “A methodology for maintenance analysis of mining equipment,” International Journal o/Surface Mining, Reclamation and Environment, vol. 11, no. 1, pp. 33–40, 1997. 14. B. Samanta, B. Sarkar, and S. Mukherjee, “Reliability modelling and performance analyses of an LHD system in mining,” South African Institute Mining And Metallurgy, vol. 104, pp. 1–8, 2004. 15. J. Barabady and U. Kumar, “Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran,” Reliability Engineering & System Safety, vol. 93, no. 4, pp. 647–653, Apr. 2008, doi: 10.1016/j.ress.2007.10.006. 16. J. Barabady and U. Kumar, “Maintenance Schedule by Using Reliability Analysis: A Case Study at Jajram Bauxite Mine of Iran,” Tehran, Iran, 2005, vol. 2, pp. 831–838. 17. J. Barabady, “Reliability and maintainability analysis of crushing plants in Jajarm Bauxite Mine of Iran,” 2005, pp. 109–115. 18. N. Vayenas and X. Wu, “Maintenance and reliability analysis of a fleet of load-haul-dump vehicles in an underground hard rock mine,” International Journal of Mining, Reclamation and Environment, vol. 23, no. 3, pp. 227–238, 2009. 19. N. G. Ali, K. Reza, A. Mohammad, and M. Ashkan, “Reliability Analysis of Conveyor Belt System of Crushing Department,” in CIVILICA, 2015, vol. 01. Accessed: Jan. 29, 2017. [Online]. Available: http://www.civilica.com/Paper-RSTCONF01-RSTCONF01_115=Reliability-Analysis-of-Conveyor-Belt-System-of-Crushing-Department.html 20. N. G. Ali, K. Reza, A. Mohammad, and M. Ashkan, “Power Law Model for Reliability Analysis of Crusher System in Khoy Cement Factory,” in CIVILICA, 2015, vol. 01. Accessed: Jan. 29, 2017. [Online]. Available: http://www.civilica.com/Paper-RSTCONF01-RSTCONF01_057=Power-Law-Model-for-Reliability-Analysis-of-Crusher-System-in-Khoy-Cement-Factory.html 21. A. N. Gharahasanlou, M. Ataei, R. Khalokakaie, A. Barabadi, and V. Einian, “Risk based maintenance strategy: a quantitative approach based on time-to-failure model,” International Journal of System Assurance Engineering and Management, pp. 1–10, Mar. 2017, doi: 10.1007/s13198-017-0607-7. 22. A. Nouri Qarahasanlou, “Production Assurance of Mining Fleet Based on Dependability and Risk Factor (Case Study: Sungun Copper Mine),” PhD Thesis in Mineral Exploita, Shahrood University of Technology Faculty of Mining, Petroleum & Geophysics, Iran, Shahrood, 2017. 23. A. Nouri Qarahasanlou, A. Mokhtarei, A. Khodayarei, and M. Ataei, “Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran,” Case Studies in Engineering Failure Analysis, vol. 2, no. 1, pp. 33–38, 2014, doi: 10.1016/j.csefa.2013.12.006. 24. A. Nouri Gharahasanlou, R. Khalokakaie, M. Ataei, and S. Fatorachi, “Availability analysis of mining machinery in Sungun copper mine,” Journal of Research-Papers Mineral Resources Engineering, vol. 1, no. 2, pp. 61–72, Feb. 2017. 25. D. Kumar and B. Klefsjö, “Proportional hazards model: a review,” Reliability Engineering & System Safety, vol. 44, no. 2, pp. 177–188, 1994. 26. D. Kumar and U. Westberg, “Proportional hazards modeling of time-dependent covariates using linear regression: a case study [mine power cable reliability],” Reliability, IEEE Transactions on, vol. 45, no. 3, pp. 386–392, 1996. 27. B. Ghodrati, “Weibull and Exponential Renewal Models in Spare Parts Estimation: A Comparison,” International Journal of Performability Engineering, vol. 2, no. 2, p. 135, 2006. 28. B. Ghodrati, U. Kumar, and D. Kumar, “Product support logistics based on product design characteristics and operating environment,” presented at the Annual International Logistics Conference and Exhibition: 12/08/2003-14/08/2003, 2003. 29. B. Ghodrati and U. Kumar, “Operating Environment Based Maintenance and Spare Parts Planning: A Case Study,” 2004, p. 125. 30. B. Ghodrati and U. Kumar, “Operating environment-based spare parts forecasting and logistics: a case study,” International Journal of Logistics Research and Applications, vol. 8, no. 2, pp. 95–105, 2005, doi: 10.1080/13675560512331338189. 31. B. Ghodrati, D. Benjevic, and A. Jardine, “Product support improvement by considering system operating environment: A case study on spare parts procurement,” International Journal of Quality & Reliability Management, vol. 29, no. 4, pp. 436–450, Apr. 2012, doi: 10.1108/02656711211224875. 32. A. Barabadi, J. Barabady, and T. Markeset, “A methodology for throughput capacity analysis of a production facility considering environment condition,” Reliability Engineering & System Safety, vol. 96, no. 12, pp. 1637–1646, 2011, doi: 10.1016/j.ress.2011.09.001. 33. A. Nouri Qarahasanlou, M. Ataei, R. Khalokakaie, S. Fatoorachi, and R. Barabady, “Operating Environment Based Reliability Analysis of Mining Equipment Case Study: Molybdenum-Copper Mine (Sungun Copper Mine),” Journal of Analytical and Numerical Methods in Mining Engineering, vol. 9, no. 18, pp. 129–141, Apr. 2019. 34. A. Nouri Qarahasanlou, M. Ataei, R. Khaolukakaie, B. Ghodrati, and M. Mokhberdoran, “Maintainability measure based on operating environment, a case study: Sungun copper mine,” Journal of Mining and Environment, 2016. 35. A. Moniri-Morad, M. Pourgol-Mohammad, H. Aghababaei, and J. Sattarvand, “Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment,” Proceedings of the IMechE, p. 1748006X18807091, Oct. 2018, doi: 10.1177/1748006X18807091. 36. G. Watson and W. Wells, “On the possibility of improving the mean useful life of items by eliminating those with short lives,” Technometrics, vol. 3, no. 2, pp. 281–298, 1961. 37. E. A. Elsayed, “Mean residual life and optimal operating conditions for industrial furnace tubes,” Case studies in reliability and maintenance, pp. 497–515, 2003. 38. M. Xie, T. N. Goh, and Y. Tang, “On changing points of mean residual life and failure rate function for some generalized Weibull distributions,” Reliability Engineering & System Safety, vol. 84, no. 3, pp. 293–299, Jun. 2004, doi: 10.1016/j.ress.2003.12.005. 39. B. Ghodrati, U. Kumar, and F. Ahmadzadeh, “Remaining useful life estimation of mining equipment: a case study,” presented at the International Symposium on Mine Planning and Equipment Selection: 28/11/2012-30/11/2012, 2012. 40. L. Wang, L. Zhang, and X. Wang, “Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model,” J. Cent. South Univ., vol. 22, no. 12, pp. 4625–4633, Dec. 2015, doi: 10.1007/s11771-015-3013-9. 41. R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, “Direct Remaining Useful Life Estimation Based on Support Vector Regression,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2276–2285, Mar. 2017, doi: 10.1109/TIE.2016.2623260. 42. Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful life estimation of engineered systems using vanilla LSTM neural networks,” Neurocomputing, vol. 275, pp. 167–179, Jan. 2018, doi: 10.1016/j.neucom.2017.05.063. 43. “IEC 60050 - International Electrotechnical Vocabulary - Details for IEV number 191-02-06: ‘reliability (performance),’” Jan. 24, 2014. http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=191-02-06 (accessed Jan. 24, 2014). 44. “IEC 60050 - International Electrotechnical Vocabulary - Details for IEV number 191-04-01: ‘failure,’” Jan. 24, 2014. http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=191-04-01 (accessed Jan. 24, 2014). 45. Z. Ma, “Survival analysis approach to reliability, survivability and prognostics and health management (phm),” 2008, pp. 1–20. 46. B. S. Dhillon, Mining equipment reliability, maintainability, and safety. Springer, 2008. 47. M. Pijnenburg, “Additive hazards models in repairable systems reliability,” Reliability Engineering & System Safety, vol. 31, no. 3, pp. 369–390, 1991. 48. D. R. Cox, “Regression models and life-tables,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 187–220, 1972. 49. S. Martorell, A. Sanchez, and V. Serradell, “Age-dependent reliability model considering effects of maintenance and working conditions,” Reliability Engineering & System Safety, vol. 64, no. 1, pp. 19–31, 1999. 50. U. Kumar, B. Klefsjö, and S. Granholm, “Reliability investigation for a fleet of load haul dump machines in a Swedish mine,” Reliability Engineering & System Safety, vol. 26, no. 4, pp. 341–361, Jan. 1989, doi: 10.1016/0951-8320(89)90004-5. 51. B. Ghodrati, “Reliability and operating environment based spare parts planning,” Doctoral Thesis, Luleå University of Technology, Sweden, 2005. 52. D. G. Kleinbaum, Survival analysis. Springer, 2011. 53. S. Lakshmi and P. G. Sundari, “A new mathematical model in weibull proportional hazards regression using GABAA,” Bulletin of Pure & Applied Sciences-Mathematics and Statistics, vol. 31, no. 1, pp. 101–107, 2012. 54. A. Barabadi, J. Barabady, and T. Markeset, “Application of accelerated failure model for the oil and gas industry in Arctic region,” 2010, pp. 2244–2248. 55. N. Gorjian Jolfaei, “Asset health prediction using the explicit hazard model,” Queensland University of Thechnology, 2012. 56. P. Prasad and K. Rao, “Reliability models of repairable systems considering the effect of operating conditions,” 2002, pp. 503–510. 57. A. Barabadi, J. Barabady, and T. Markeset, “Maintainability analysis considering time-dependent and time-independent covariates,” Reliability Engineering & System Safety, vol. 96, no. 1, pp. 210–217, 2011. 58. C. Xiongzi, Y. Jinsong, T. Diyin, and W. Yingxun, “Remaining useful life prognostic estimation for aircraft subsystems or components: A review,” 2011, vol. 2, pp. 94–98. 59. D. G. Kleinbaum and M. Klein, “Survival Analysis: A Self-Learning Text,” Springer Science & Business Media, 2012. 60. M. Cleves, W. Gould, W. W. Gould, R. Gutierrez, and Y. Marchenko, An introduction to survival analysis using Stata. Stata press, 2016. 61. E. George, W. G. Hunter, and J. S. Hunter, Statistics for experimenters: design, innovation, and discovery. Wiley, 2005.