شناسایی الگوهای ژئوشیمیایی در محدوده کانی زایی خوینرود به روش تحلیل تطبیقی و خوشه بندی

نوع مقاله : علمی - پژوهشی

نویسنده

استادیار گروه مهندسی معدن، دانشگاه صنعتی بیرجند

چکیده

شناسایی الگوهای پراکندگی عناصر و مرتبط کردن آن‌ها با آنومالی‌های ژئوشیمیایی یکی از ابزارهای اکتشافی به ویژه در فازهای نیمه‌تفصیلی و تفصیلی محسوب می‌شود. روش‌هایی که بتواند نمونه‌ها و عناصر شیمیایی را به طور همزمان مورد تحلیل قرار دهد، برای این منظور پیشنهاد می‌شود. در این مقاله از دو روش تحلیل تطبیقی خوشه‌ای (CCA) و الگوریتم خوشه‌بندی بر اساس توابع توزیع چگالی (DENCLUE) و داده‌های ژئوشیمیایی در فاز اکتشافی نیمه‌تفصیلی منطقه خوینرود استفاده شده است. خوشه‌بندی 165 نمونه‌ برداشت از محیط خاکی به همراه نتایج آنالیز 7 عنصر مرتبط با کانی‌زایی مس- طلای پورفیری یعنی As، Au، Cu، Hg، Pb، S و Zn نشان می‌دهد که چهار محدوده A، B، C و D مستعد کانی‌زایی در منطقه قابل مشاهده است. در روش CCA داده‌ها به 6 خوشه تفکیک شده که خوشه اول شامل عنصر گوگرد به همراه 57 نمونه، خوشه دوم شامل 61 نمونه، خوشه سوم شامل عنصر سرب به همراه 16 نمونه، خوشه چهارم شامل عنصر مس به همراه 8 نمونه، خوشه پنجم شامل عنصر آرسنیک به همراه 7 نمونه و خوشه ششم شامل عناصر طلا، جیوه و روی به همراه 17 نمونه است. درحالی که نتایج خوشه‌بندی داده‌ها به روش DENCLUE شامل 5 خوشه به ترتیب به صورت گوگرد با 66 نمونه، 43 نمونه، سرب و روی با 38 نمونه، طلا و مس با 10 نمونه و آرسنیک و جیوه با 8 نمونه است. بخش C2 از محدوده C و بخش D2 از محدوده D به عنوان بهترین محدوده‌ها با احتمال کانی‌زایی پورفیری و محدوده A به احتمال کانی‌زایی رگه‌ای هیدروترمال پیشنهاد می‌شود. محدوده‌های B و D1 نیز با احتمال کانی‌زایی رگه‌ای با نیاز به اکتشاف تکمیلی، پیشنهادات بعدی‌اند. همچنین نتایج نشان‌دهنده‌ خوشه‌بندی بهتر عناصر، انطباق بهتر محدوده‌های پیشنهادی برای کانی‌زایی با آنومالی‌های ژئوشیمیایی عناصر و شرایط زمین‌شناسی منطقه مورد مطالعه از برتری‌های الگوریتم DENCLUE است. بنابراین برای ارتباط الگوی پراکندگی عناصر با آنومالی ژئوشیمیایی آن‌ها می‌توان از این الگوریتم استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of geochemical patterns in Khoynaroud mineralization area by correspondence analysis and DENCLUE clustering method

نویسنده [English]

  • Hamid Geranian
Assistant of Professor, Department of Mining Engineering, Birjand University of Technology
چکیده [English]

Identification of the element dispersion patterns and relating them to the geochemical anomalies is one of the exploration tools, especially in the semi-detailed and detailed phases. Methods that can simultaneously analyze samples and elements are recommended for this purpose. In this paper, two methods namely, correspondence cluster analysis (CCA) and density-based clustering algorithm (DENCLUE) and the geochemical data of Khoynaroud region have been used. Clustering of 165 soil samples, along with the results of the 7 elements analysis associated to the porphyry copper-gold mineralization, namely As, Au, Cu, Hg, Pb, S and Zn, shows that four A, B, C and D areas are visible with mineralization potential in the study area. In CCA method, the data are divided into 6 clusters. These clusters contain S with 57 samples, 61 samples, Pb with 16 samples, Cu with 8 samples, As with 7 samples and Au, Hg and Zn with 17 samples, respectively. While in DENCLUE method include 5 clusters in the form of S with 66 samples, 43 samples, Pb and Zn with 38 samples, Au and Cu with 10 samples and As and Hg with 8 samples, respectively. Part C2 of area C and part D2 of area D are proposed as the best areas with the possibility of porphyry mineralization and as well as area A with the possibility of hydrothermal vein mineralization. Area B and part D1 with the possibility of vein mineralization and the need for additional exploration are also likely to be the next proposals. The results also show the better clustering of the elements, better adaptation of the proposed areas for mineralization with multi-element geochemical anomalies and geological conditions of the study area are the advantages of DENCLUE algorithm. Therefore, this algorithm can be used to relate the element dispersion pattern with their geochemical anomaly.

کلیدواژه‌ها [English]

  • Correspondence analysis
  • DENCLUE clustering method
  • Mineralization potential
  • Multi-element geochemical anomaly
  • Khoynaroud mineralization area
1. آقانباتی، سیدعلی؛ 1383؛ «زمین‌شناسی ایران»، تهران، سازمان زمین‌شناسی کشور.## 2. برنا، بهروز؛ 1391؛ «اکتشاف ژئوشیمیایی سیستماتیک در ورقه یکصد هزار ورزقان»، سازمان زمین‌شناسی و اکتشافات معدنی کشور، طرح زمین‌شناسی عمومی (پروژه ژئوشیمیایی).## 3. دارابی گلستان، فرشاد؛ قوامی ریابی، رضا؛ مجلسی، محمد جواد؛ معمارزاده، مجتبی؛ اسدی هارونی، هوشنگ؛ 1391؛ «شناسایی و تفکیک متغیرهای آنومال با روش‌های آنالیز تطبیقی و تفریقی در منطقه دالی شمالی»، نشریه علمی- پژوهشی روشهای تحلیلی و عددی در مهندسی معدن، شماره 3، صفحه 35 تا 43.## 4. دارابی گلستان، فرشاد؛ هزارخانی، اردشیر؛ سیف‌پناهی شعبانی، کیومرث؛ 1394؛ «به کارگیری آنالیز تطبیقی و و هندسه فراکتال جهت شناسایی عناصر ناهنجار در خاک و تعیین محدوده آن در ورقه 1:100000 خوسف»، نشریه علمی- ترویجی یافته‌های نوین زمین‌شناسی کاربردی، دوره 9، شماره 18، صفحه 9 تا 17.## 5. سهرابی، قهرمان؛ 1394؛ «بررسی متالوژنی و ژئوشیمی ذخایر مولیبدن در نوار قره داغ- شیورداغ، آذربایجان‌شرقی، شمال‌غرب ایران»، رساله دکتری، دانشگاه تبریز.## 6. شرکت اسپیر؛ 1385؛ «گزارش اکتشاف محدوده مینرالیزه خوینه‌رود (شمال شهرستان ورزقان، استان آذربایجان‌شرقی) با هدف اکتشاف فلزات پایه و گران‌بها»، گزارش فاز اکتشافات 1:5000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.## 7. عباس‌زاده، سمیه؛ رحیمی‌پور، غلامرضا؛ نجم‌الدینی، مجید؛ 1392؛ «شناسایی مناطق کانی‌زایی مس پورفیری با استفاده از تلفیق روش‌های تک متغیره و چند متغیره بر روی داده‌های ژئوشیمیایی آبراهه‌ای در منطقه قلعه عسکر، استان کرمان»، نشریه علمی-پژوهشی روش‌های تحلیلی و عددی در مهندسی معدن، شماره 6، صفحه 69 تا 82.## 8. گرانیان، حمید؛ 1396؛ «کاربرد روش‌های خوشه‌بندی در شناسایی آنومالی‌های مرکب در اکتشافات ژئوشیمیایی ناحیه‌ای در کردگان خراسان‌جنوبی»، نشریه علمی- پژوهشی مهندسی معدن، دوره دوازدهم، شماره 37، صغحه 81 تا 94.## 9. محمدزاده، محمد جعفر؛ ناصری، اینور؛ محمودیان، امید؛ 1388؛ «مقایسه روش‌های جداسازی جوامع سنگی و خوشه‌بندی فازی میان مرکز برای حذف مولفه سنژنتیک در اکتشافات ناحیه‌ای رسوبات آبراهه‌ای قره چمن- آذربایجان‌شرقی»، نشریه علمی- پژوهشی مهندسی معدن، دوره چهارم، شماره هشتم، صفحه 51 تا 58.## 10. معینی، حمید؛ محمد تراب، فرهاد؛ کیخانی حسین‌پور، مجید؛ 1394؛ «بررسی کاربرد نگاشت‌های خودسازمانده در خوشه‌بندی داده‌های آبراهه‌ای و مقایسه آن با دندوگرام اکتشافی داده‌های ترکیبی»، نشریه علمی- پژوهشی مهندسی معدن، دوره دهم، شماره 27، صفحه 95 تا 107.## 11. Benzécri, J.P., 1964; “Cours de linguistique mathématique”, Publication Mimeo, Faculté des sciences, Rennes, France.## 12. Beh, E.J., Lombardo, R., 2014; “Correspondence Analysis: Theory, Practice and New Strategies”, John Wiley & Sons, 593 p.## 13. Carranza, E.J.M., Zuo, R., 2017; “Introduction to the thematic issue: analysis of exploration geochemical data for mapping of anomalies”, Geochemistry: Exploration, Environment, Analysis 17(3), 183–185.## 14. Chen, D., Wei, J., Wang, W., Shi, W., Li, H., Zhan, X., 2019; “Comparison of methods for determining the thresholds of geochemical anomalies and the prospecting direction—A case of gold deposits in the Gouli exploration area, Qinghai Province”, Minerals 9, 368.## 15. Clare, A.P., Cohen, D.R., 2001; “A comparison of unsupervised neural networks and k-means clustering in the analysis of multi-element stream sediment data”, Geochemistry: Exploration, Environment, Analysis 1, 119–134.## 16. Collyer, P.L., Merriam, D.F., 1973; “An application of cluster analysis in mineral exploration”, Mathematical Geosciences 5(3), 213–223.## 17. Daya, A.A., Boomeri, M., Mazraee, N., 2017; “Identification of geochemical anomalies by the use of concentration-area (C-A) fractal model in Nakhilab region, SE Iran”, International Journal of Mining and Mineral Engineering 8(1), 70-81.## 18. Ellefsen, K.J., Smith, D.B., 2016; “Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model”, Applied Geochemistry 75, 200–210. ## 19. Ellefsen, K.J., Smith, D.B., Horton, J.D., 2014; “A modified procedure for mixture-model clustering of regional geochemical data”, Applied Geochemistry 51, 315-326.## 20. Farahmandfar, Z., Jafari, M., Afzal, P., Ashja–Ardalan, A., 2020; “Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in Lahrud 1:100,000 sheet, NW Iran”, Geopersia 10 (1), 135-148.## 21. Fatehi, M., Asadi, H.H., 2017; “Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran”, Ore Geology Reviews 81, 245–255.## 22. Gan, Li, D., 2003; “Optimal Choice of Parameters for a Density-Based Clustering Algorithm”, In: G. Wang et al. (Eds.): RSFDGrC 2003, LNAI 2639, pp. 603–606.## 23. Geranian, H., Khajeh Miry, Z., 2020; “Application of probabilistic clustering algorithms to determine mineralization areas in regional-scale exploration studies”, Journal of Mining & Environment 11(4), 1059-1078.## 24. Ghezelbash, R., Maghsoudi, A., Daviran, M., 2019; “Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element geochemical signatures in the Varzaghan district, NW Iran”, Acta Geochimica 38, 31–144.## 25. Han, J., Kamber, M., Pei, J., 2012; “Data Mining: Concepts and Techniques”, Morgan Kaufmann, 740 p.## 26. Hinneburg, A., Gabriel, H.H., 2007; “DENCLUE 2.0: Fast clustering based on kernel density estimation”, In Advances in Intelligent Data Analysis VII, pp. 70–80. Springer Berlin.## 27. Hinneburg, A., Keim, D., 1998; “An efficient approach to clustering in large multimedia databases with noise”, In: Proceedings KDD’98, pp. 58–65.## 28. Idrissi, A., Rehioui, H., Laghrissi, A., Retal, S., 2015; “An Improvement of DENCLUE Algorithm for the Data Clustering”, International Conference on Information and Communication Technology and Accessibility, ICTA 2015. Marrakech, Morocco.## 29. Jang, G.H., Won, H.C., Hwang, B.H., Choi, C.M., 2020; “Exploratory data analysis applied in mapping multi‐element soil geochemical anomaly for drill target definition: A case study from the Unpha Layered non‐magmatic hydrothermal Pb‐Zn deposit, DPR Korea”, Acta Geological Sinica, https://doi.org/10.1111/1755-6724.14404.## 30. Jin, H., Yu, W., Li, S., 2018; “A clustering algorithm for determining community structure in complex networks”, Physica A 492, 980-993.## 31. Ji, H., Zeng, D., Shi, Y., Wu, Y., Wu, X., 2007; “Semi-hierarchical correspondence cluster analysis and regional geochemical pattern recognition”, Journal of Geochemical Exploration 93, 109–119.## 32. John, D.A., 2010; “Porphyry Copper Deposit Model”, Scientific Investigations Report 2010–5070–B, U.S. Geological Survey, 186 p.## 33. Hongjin, J., Yongzheng, Z., Xisheng. W., 1995; “Correspondence cluster analysis and its application in exploration geochemistry”, Journal of Geochemical Exploration 55, 137-144.## 34. Karbalaei Ramezanali, A., Feizi, F., Jafarirad, A., Lotfi, M., 2020; “Geochemical Anomaly and Mineral Prospectivity Mapping for Vein-Type Copper Mineralization, Kuhsiah-e-Urmak Area, Iran: Application of Sequential Gaussian Simulation and Multivariate Regression Analysis”, Natural Resources Research 29, 41–70.## 35. Latecki, L.J., Lazarevic, A., Pokrajac, D., 2007; “Outlier Detection with Kernel Density Functions”, In: Perner P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science, vol 4571. Springer, Berlin, Heidelberg.## 36. Li, C., Sun, Z., Song, Y., 2003; “DENCLUE-M: Boosting DENCLUE algorithm by mean approximation on grids”, International Conference on Web-Age Information Management, WAIM 2003, pp 202-213.## 37. Mellinger, M., 1984; “Correspondence analysis in the study of lithogeochemical data: general strategy and the usefulness of various data-coding schemes”, Journal of Geochemical Exploration 21, 455—469.## 38. Obthong, N., Sriphum, W., 2011; “Optimal Choice of Parameters for DENCLUE-based and Ant Colony Clustering”, International Conference on Modeling, Simulation and Control, IPCSIT vol.10, IACSIT Press, Singapore, pp 69-73.## 39. Patinha, C., Correia, E., Ferreira da Silva, E., Simões, A., Reis, P., Morgado, F., Cardoso Fonseca, E., 2008; “Definition of geochemical patterns on the soil of Paul de Arzila using correspondence analysis”, Journal of Geochemical Exploration 98, 34–42.## 40. Piorecký, M., Štrobl. J., Krajča, V., 2019; “Automatic EEG Classification Using Density Based Algorithms DBSCAN and DENCLUE”, Acta Polytechnica 59(5), 498–509.## 41. Pirajno, F., 2009; “Hydrothermal Processes and Mineral Systems”, Springer Publication, Australia, 1273 p.## 42. Pirajno, F., 2012; “Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist”, Springer-Verlag, 688 p.## 43. Prabahari, R., Thiagarasu, D.V., 2014; “A comparative analysis of density-based clustering techniques for outlier mining”, International Journal of Engineering Sciences & Research Technology 3(11), 132-136.## 44. Prabahari, R., Thiagarasu, D.V., 2014; “Density Based Clustering Using Gaussian Estimation Technique”, International Journal on Recent and Innovation Trends in Computing and Communication 2(12), 4078-4081.## 45. Rantitsch, G., 2000; “Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry”, Journal of Geochemical Exploration 71, 73–82.## 46. Rehioui, H., Idrissi, A., Abourezq, M., Zegrari, F., 2016; “DENCLUE-IM: A New Approach for Big Data Clustering”, Procedia Computer Science 83, 560 – 567.## 47. Reimann, C., Filzmoser, P., Garrett, R.G., 2002; “Factor analysis applied to regional geochemical data: problems and possibilities”, Applied Geochemistry 17, 185–206.## 48. Saadati, H., Afzal, P., Torshizian, H., Solgi, A., 2020; “Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model”, Geochemistry: Exploration, Environment, Analysis 20(4), 461–472.## 49. Sadeghi, M., Morris, G.A., Carranza, E.J.M., Ladenberger, A., Andersson, M., 2013; “Rare earth element distribution and mineralization in Sweden: An application of principal component analysis to FOREGS soil geochemistry”, Journal of Geochemical Exploration 33, 160-175.## 50. Shah, H., Napanda, K., D’mello, L., 2015; “Density Based Clustering Algorithms”, International Journal of Computer Sciences and Engineering 3(11), 54-57.## 51. Shi, M., Carr, J.R., 2001; “A modified code for R-mode correspondence analysis of large-scale problems”, Computers & Geosciences 27, 139–146.## 52. Sreevani, R., Murthy, C.A., 2016; “On bandwidth selection using minimal spanning tree for kernel density estimation”, Computational Statistics and Data Analysis 102, 67–84.## 53. Templ, M., Filzmoser, P., Reimann, C., 2008; “Cluster analysis applied to regional geochemical data: Problems and possibilities”, Applied Geochemistry 23(8), 2198–2213.## 54. Tian, D., Sorooshian, S., Myers, D.E., 1993; “Correspondence analysis with MATLAB”, Computers & Geosciences 19(7), 1007-1022.## 55. White, W.M., 2013; “Geochemistry”, Wiley-Blackwell Publications, 668 p.## 56. Xu, Y., Xu, N., Feng, X., 2016; “A New Outlier Detection Algorithm Based on Kernel Density Estimation for ITS”, The IEEE International Conference on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing and Smart Data. Chengdu, China.## 57. Zadmehr, F., Shahrokhi, S.V., 2019; “Separation of geochemical anomalies by concentration-area and concentration number methods in the Saqez 1:100,000 sheet, Kurdistan”, Iranian Journal of Earth Sciences 11(3), 196-204.##