تاثیر آب زیرزمینی، آب دریا و آب شیرین شده دریا بر فلوتاسیون کانی مس- مولیبدن معدن مس سرچشمه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فرآوری مواد معدنی، موسسه آموزش عالی علامه جعفری رفسنجان

2 استادیار فرآوری مواد معدنی، گروه مهندسی معدن، موسسه آموزش عالی علامه جعفری رفسنجان،

3 استادیار فرآوری مواد معدنی، گروه مهندسی معدن، موسسه آموزش عالی علامه جعفری رفسنجان

چکیده

در پی کاهش منابع آب تازه و نیاز روزافزون جامعه به این منابع، کاهش مصرف آب تازه در صنایع به ‌ویژه صنعت مس مورد توجه است. بدین منظور علاوه بر بازیافت آب، استفاده از آب دریا و آب شیرین شده دریا به ‌عنوان گزینه‌های جایگزین می‌تواند مطرح باشد. از آنجایی که بیشترین مصرف آب در فرآوری کانی‌های سولفیدی مس و مولیبدن در واحد فلوتاسیون است، بنابراین هدف از این تحقیق بررسی تغییرات کیفیت آب در کارایی واحد فلوتاسیون رافر است. نتایج نشان داد که در شرایط عملیاتی مشابه، استفاده از آب دریا موجب کاهش بازیابی کانی‌های سولفیدی مس از 2/89 درصد به 8/68 درصد است. این در حالی است که بازیابی فلوتاسیون در هنگام استفاده از آب شیرین شده دریا (89/80 درصد) نزدیک به بازیابی در هنگام استفاده از آب زیرزمینی (20/89 درصد) است. همچنین بازیابی مولیبدن در هر دو حالت به حدود 100 درصد رسید، در حالی که این مقدار برای آب دریا 59 درصد بوده است. بنابراین استفاده از آب شیرین شده دریا می‌تواند جایگزین مناسبی برای آب‌های زیرزمینی (شرایط فعلی) باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of well water, seawater and treated water on Cu-Mo flotation of Sarcheshmeh copper complex

نویسندگان [English]

  • abolfazl jamali 1
  • majid unesi 2
  • seyed mojtaba mortazavi 3
1 mining department, allameh jafari institute
2 Allameh Jafari Institute
3 MINING DEPARTMENT allameh jaffari institute
چکیده [English]

Following the reduction of fresh water resources and the growing need of society for these resources, the reduction of fresh water consumption in industries, especially the copper industry, is considered. In addition to water recycling, the use of seawater and treated water can be considered as alternatives. Since the highest water consumption of copper and molybdenum sulfide minerals processing is in the flotation unit, the purpose of this study is to investigate the changes of water quality on the efficiency of rougher flotation unit. The results showed that in similar operating conditions, the use of seawater reduces the recovery of copper sulfide minerals from 89.2% to 68.8%. However, the recovery of flotation when using treated water was 80.89% which is close to recovery when using well water (89.20%). Molybdenum recovery in both cases was approx. 100%, compared to 59 percent for seawater. Therefore, the use of treated water can be a good alternative to well water (current conditions).

کلیدواژه‌ها [English]

  • Copper and Molybdenum Flotation
  • Treated water
  • Sea Water
  • Well Water
1- منابع 1. نخعی، فردیس؛ 1394؛ «استفاده از آب دریا در فلوتاسیون مس مولیبدن»، فصلنامه علمی- پژوهشی دریا فنون.## 2. Bournival. G, Pugh. R.J, Ata. S; 2012; “Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation”. Minerals Engineering, Volume 25, Issue 1, Pages 47-53.## 3. Castro S, Rioseco P, Laskowski J.S; 2012; “Depression of molybdenite in sea water” In: Proc. 26th Int. Mineral Processing Congress, IMPC-2012, New Delhi-India, Pages 737–752.## 4. Castro S; 2018 “Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: a critical review” Physicochemical Problem of Mineral Processing” 54, Pages 1223–1236.## 5. Chandra. A.P; 2009; “A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite” Advances in Colloid and Interface ScienceVolume 145, Issues 1–230, Pages 97-110.## 6. Chin I, Somasundaran P; 1991“Reversal of bubble charge in multivalent inorganic salts – effect of magnesium” Journal of Colloidal Interface Science, 146, Pages 215–218.## 7. Constanz C, Ramos J, Robles P, Leiva W, Jeldresa R, Cisternas L, 2020, “Partial seawater desalination treatment for improving chalcopyrite floatability and tailing flocculation with clay content” Minerals Engineering, 151 Pages 1-7.## 8. Eigeles M.A, Volova M.L; 1968 “Activation of air bubbles by the insoluble products of reactions in flotation” In: Proc. 8th Int. Mineral Processing Congress, Leningrad, 2, Pages 353–364.## 9. Fisher. W.W, Rudy. S; 1976; “Utilization of municipal waste water for froth flotation of copper and molybdenum” The Arizona Bureau of Mines: Mineral, Technology Branch, Circular 17.## 10. Gde Pandhe, Wisnu Suyantaraa; 2018; “floatability of molybdenite and chalcopyrite in artificial seawater” Minerals Engineering, Volume 115, Pages 117-130.## 11. Han M.Y, Ahn H.J, Shin M.S, Kim E.R; 2004 “The effect of divalent metal ions on the zeta potential of bubbles” Water Science and Technology” 50 (8), Pages 49–56.## 12. Hoover. M.R; 1980; “Water chemistry effects in the flotation of sulphide ores” Institution of Mining and Metallurgy, London, Pages 100–112.## 13. Jeldres R.I, Arancibia-Bravo M.P, Reyes A, Aguirre C.E, Cortes L, Cisternas L.A; 2017 “The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores” Minerals Engineering, 109, Pages 10–13.## 14. Kitchener. J.A; 1984; “The Froth Flotation Process: Past, Present and Future-In Brief. Principles of Mineral Flotation: The Wark Symposiu”. The Australian Institute of Mining and Metallurgy, Victoria, Australia, pp. 65–71.## 15. Koh. P.T.L; 2009; “The effect of particle shape and hydrophobicity in flotation. International Journal of Mineral Processing” 93, 2, Pages 128-134.## 16. Kristen. E, Bremmell; 2005; “Pentlandite–lizardite interactions and implications for their separation by flotation” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 2–3, Pages 207-212.## 17. Laskowski J.S, Castro S; 2012; “Hydrolyzing ions in flotation circuits: sea water flotation” In: Proc. 13th International Mineral Processing Symposium, IMPS 2012, Bodrum Turkey, Pages 219–227.## 18. Li W, Li Y; 2019 “Improved understanding of chalcopyrite flotation in seawater using sodium Hexametaphosphate” Minerals Engineering, 134, Pages 269–274## 19. Lucay F, Cisternas L.A, Gálvez E, López-Valdivieso A; 2015 “Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation” Mineral, Metallurgical and Processing, 32, Pages 203–208.## 20. Mariana. A, dos Santos; 2010; “Effect of ionic species on the performance of apatite flotation” Separation and Purification Technology, 76, 1, Pages 15-20.## 21. Mu Y, Peng Y; 2019 “The effect of saline water on copper activation of pyrite in chalcopyrite Flotation” Minerals Engineering, 131, Page 336–341.## 22. Pugh. R.J, Weissenborn, P., Paulson, O; 1997; “Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility” International Journal of Mineral Processing, 51, 1–4, Pages 125-138.## 23. Raghavan. S; 1984; “Factors affecting the flotation recovery of molybdenite from porphyry copper ores” International Journal of Mineral Processing, 12, 1–3, Pages 145-162.## 24. Ramos O, Castro S, Laskowski J.S; 2013; “Copper–molybdenum ores flotation in sea water: Floatability and frothability” Minerals Engineering, 53, Pages 108-112.## 25. Smith L.K, Heyes G.W; 2012 “The effect of water quality on the collectorless flotation of chalcopyrite and bornite” In: Water in Mining. Presented at the 3rd International Congress on Water Management in the Mining Industry, 3rd International Congress on Water Management in the Mining Industry, Santiago, Chile.## 26. Uribe L, Gutierrez L, Laskowski J.S, Castro S; 2017 “Role of calcium and magnesium cations in the interactions between kaolinite and chalcopyrite in seawater” Physicochemical Problems of Minerals Processing, 53, Pages 737–749.## 27. Wang B, Peng Y; 2014 “The effect of saline water ## 28. ##on mineral flotation – A critical review” Minerals Engineering, 66, Pages 13–24.## 29. Yepsen R., Gutierrez L., Laskowski J; 2019. “Flotation behavior of enargite in the process of flotation using seawater” Minerals Engineering, 142.## 30. Yufan Mu, Yongjun Peng; 2019; “The effect of saline water on copper activation of pyrite in chalcopyrite flotation” Minerals Engineering, 131, Pages 336-341.## 31. Yufan Mu, Yongjun Peng; 2019; “The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water” Minerals Engineering, 1421- منابع 1. نخعی، فردیس؛ 1394؛ «استفاده از آب دریا در فلوتاسیون مس مولیبدن»، فصلنامه علمی- پژوهشی دریا فنون.## 2. Bournival. G, Pugh. R.J, Ata. S; 2012; “Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation”. Minerals Engineering, Volume 25, Issue 1, Pages 47-53.## 3. Castro S, Rioseco P, Laskowski J.S; 2012; “Depression of molybdenite in sea water” In: Proc. 26th Int. Mineral Processing Congress, IMPC-2012, New Delhi-India, Pages 737–752.## 4. Castro S; 2018 “Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: a critical review” Physicochemical Problem of Mineral Processing” 54, Pages 1223–1236.## 5. Chandra. A.P; 2009; “A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite” Advances in Colloid and Interface ScienceVolume 145, Issues 1–230, Pages 97-110.## 6. Chin I, Somasundaran P; 1991“Reversal of bubble charge in multivalent inorganic salts – effect of magnesium” Journal of Colloidal Interface Science, 146, Pages 215–218.## 7. Constanz C, Ramos J, Robles P, Leiva W, Jeldresa R, Cisternas L, 2020, “Partial seawater desalination treatment for improving chalcopyrite floatability and tailing flocculation with clay content” Minerals Engineering, 151 Pages 1-7.## 8. Eigeles M.A, Volova M.L; 1968 “Activation of air bubbles by the insoluble products of reactions in flotation” In: Proc. 8th Int. Mineral Processing Congress, Leningrad, 2, Pages 353–364.## 9. Fisher. W.W, Rudy. S; 1976; “Utilization of municipal waste water for froth flotation of copper and molybdenum” The Arizona Bureau of Mines: Mineral, Technology Branch, Circular 17.## 10. Gde Pandhe, Wisnu Suyantaraa; 2018; “floatability of molybdenite and chalcopyrite in artificial seawater” Minerals Engineering, Volume 115, Pages 117-130.## 11. Han M.Y, Ahn H.J, Shin M.S, Kim E.R; 2004 “The effect of divalent metal ions on the zeta potential of bubbles” Water Science and Technology” 50 (8), Pages 49–56.## 12. Hoover. M.R; 1980; “Water chemistry effects in the flotation of sulphide ores” Institution of Mining and Metallurgy, London, Pages 100–112.## 13. Jeldres R.I, Arancibia-Bravo M.P, Reyes A, Aguirre C.E, Cortes L, Cisternas L.A; 2017 “The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores” Minerals Engineering, 109, Pages 10–13.## 14. Kitchener. J.A; 1984; “The Froth Flotation Process: Past, Present and Future-In Brief. Principles of Mineral Flotation: The Wark Symposiu”. The Australian Institute of Mining and Metallurgy, Victoria, Australia, pp. 65–71.## 15. Koh. P.T.L; 2009; “The effect of particle shape and hydrophobicity in flotation. International Journal of Mineral Processing” 93, 2, Pages 128-134.## 16. Kristen. E, Bremmell; 2005; “Pentlandite–lizardite interactions and implications for their separation by flotation” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 2–3, Pages 207-212.## 17. Laskowski J.S, Castro S; 2012; “Hydrolyzing ions in flotation circuits: sea water flotation” In: Proc. 13th International Mineral Processing Symposium, IMPS 2012, Bodrum Turkey, Pages 219–227.## 18. Li W, Li Y; 2019 “Improved understanding of chalcopyrite flotation in seawater using sodium Hexametaphosphate” Minerals Engineering, 134, Pages 269–274## 19. Lucay F, Cisternas L.A, Gálvez E, López-Valdivieso A; 2015 “Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation” Mineral, Metallurgical and Processing, 32, Pages 203–208.## 20. Mariana. A, dos Santos; 2010; “Effect of ionic species on the performance of apatite flotation” Separation and Purification Technology, 76, 1, Pages 15-20.## 21. Mu Y, Peng Y; 2019 “The effect of saline water on copper activation of pyrite in chalcopyrite Flotation” Minerals Engineering, 131, Page 336–341.## 22. Pugh. R.J, Weissenborn, P., Paulson, O; 1997; “Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility” International Journal of Mineral Processing, 51, 1–4, Pages 125-138.## 23. Raghavan. S; 1984; “Factors affecting the flotation recovery of molybdenite from porphyry copper ores” International Journal of Mineral Processing, 12, 1–3, Pages 145-162.## 24. Ramos O, Castro S, Laskowski J.S; 2013; “Copper–molybdenum ores flotation in sea water: Floatability and frothability” Minerals Engineering, 53, Pages 108-112.## 25. Smith L.K, Heyes G.W; 2012 “The effect of water quality on the collectorless flotation of chalcopyrite and bornite” In: Water in Mining. Presented at the 3rd International Congress on Water Management in the Mining Industry, 3rd International Congress on Water Management in the Mining Industry, Santiago, Chile.## 26. Uribe L, Gutierrez L, Laskowski J.S, Castro S; 2017 “Role of calcium and magnesium cations in the interactions between kaolinite and chalcopyrite in seawater” Physicochemical Problems of Minerals Processing, 53, Pages 737–749.## 27. Wang B, Peng Y; 2014 “The effect of saline water ## 28. ##on mineral flotation – A critical review” Minerals Engineering, 66, Pages 13–24.## 29. Yepsen R., Gutierrez L., Laskowski J; 2019. “Flotation behavior of enargite in the process of flotation using seawater” Minerals Engineering, 142.## 30. Yufan Mu, Yongjun Peng; 2019; “The effect of saline water on copper activation of pyrite in chalcopyrite flotation” Minerals Engineering, 131, Pages 336-341.## 31. Yufan Mu, Yongjun Peng; 2019; “The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water” Minerals Engineering, 142