مدل‌سازی زمین‌آماری غیرمستقیم توزیع فضایی عیار طلا با استفاده از تلفیق داده‌های IP - RS و پاراژنزهای سولفیدی همراه در محدوده یگانلی و قینرجه (زرشوران)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه تهران

2 عضوهیئت علمی

3 عضو هیئت علمی دانشکده مهندسی معدن دانشگاه تهران

4 North Amir-Abad University College of Engineering

10.22034/ijme.2020.106257.1720

چکیده

این مطالعه در تلاش است تا به تشریح یک مدل‌سازی زمین آماری برای تخمین و شبیه‌سازی کانسار طلای محدوده یگانلی و قینرجه در یال جنوب غربی معدن زرشوران واقع در 35 کیلومتری شهرستان تکاب استان آذربایجان غربی بپردازد. با توجه به وجود چگالی بالا در مقادیر عنصر طلا، دقت در ارزیابی آن بسیار مهم بوده و تحقیقات مختلفی برای کاهش عدم قطعیت این عنصر انجام شده است. جهت افزایش دقت مدل سازی کانسار طلای مورد مطالعه، در این تحقیق داده‌های گمانه اکتشافی (داده‌های سخت) و داده‌های ژئوفیزیکی (داده‌های نرم) به صورت ترکیبی استفاده شد. برای این منظور، داده‌های ژئوفیزیکی مقاومت ویژه و پلاریزاسیون القایی برداشت شده در منطقه مورد مطالعه به عنوان داده‌های نرم در الگوریتم روش مدل‌سازی به کار گرفته شده است. داده‌های ژئوفیزیکی شامل 17 پروفیل موازی با طول حدود 735 متر است. با توجه به توپوگرافی منطقه، برداشت پروفیل‌های ژئوفیزیکی با آرایه قطبی- دو قطبی و با فاصله الکترودی 30 متر انجام شده است. جهت تأثیر داده‌های نرم در رویکرد مدل‌سازی، براساس نتایج حاصل از وارون سازی داده‌های ژئوفیزیکی یک فاکتور ژئوفیزیکی به نام فاکتور سولفیدی ارائه شد. همچنین، براساس داده‌های حاصل از 17 گمانه اکتشافی و پیاده‌سازی روش آنالیز مولفه‌های اصلی بر روی آنها، یک فاکتور معرف کانی‌ سازی به منظور تأثیر داده‌های سخت در رویکرد مدل‌سازی ارائه گردید. در نهایت، جهت برقراری ارتباط بین داده‌های سخت و داده‌های نرم، از روش کوکریجینگ استفاده شد. مقایسه نتایج حاصل از این رویکرد با نتایج حاصل مدل‌سازی کانسار طلا با استفاده از روش کریجینگ معمولی حاکی از کاهش عدم قطعیت در مدل‌سازی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Indirect modeling of spatial distribution of gold grade using the integration of IP-RS data and associated sulfide paragenes in the range of Yangani and Qinrjeh (zarshuran)

نویسندگان [English]

  • hamid abazarfard 1
  • Omid Asghari 2
  • gholamhossein norouzi 3
  • sajjad talesh hosseini 4
1 Master's degree in Tehran University-Tehran
2 Faculty Member of University of Tehran
3 faculty of member of university of Tehran
4 North Amir-Abad University College of Engineering
چکیده [English]

The study area is the Yeganlly and Qinranjeh area, southwest of Zarshuran gold mine, 35 km away from Takab city, West Azarbaijan province. The study area is located on the southwest edge of the mine. Only 17 borehole data were available for this study and were evaluated. Geophysical data includes 17 parallel profiles with a length of about 735 meters with a 30 meter distance electrode and a polar-bipolar mapping array according to the topography of the area. The objective of introducing and presenting a method for simulation and single-multivariate estimation using the most widely used methods, such as usual cracking, ordinary cokriging, sequential simulation, sequential coexistence simulation, in order to reproduce more precisely the initial region variables and Secondary will be. Geophysical data was constructed of a so-called sulfide factor. After normalizing, for each variable, the variography chart was drawn and estimated using the Kriging method according to the variogram in the borehole coordinates. Then, by normalizing the data in the specimen, analysis of the main components on the variables was performed using SPSS software. The output of this part was two factors that the fact that the amount of gold mineralization was high was introduced as a mineralization factor. Now, with two existing factors, namely, the sulfide factor (geophysical factor) and the gold mineralization factor in the studied area, the combined interactions between the built-in block models were combined with the estimation and simulation; ultimately, validation was also performed by evaluating and estimating two boreholes Isolated randomly using other specimens at the end. It was found that according to the evaluated results, when estimating the gold grade when using sulfide factors and mineralization in coking, the gold monorangle estimation by conventional Kriging estimation is closer to the real values of gold.

کلیدواژه‌ها [English]

  • Principal Component Analysis
  • Sequential Gaussian Simulation
  • Sulphide factor
  • Mineralization factor
  • Kriging