نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری فرآوری مواد معدنی دانشگاه صنعتی امیرکبیر

2 دانشگاه صنعتی امیرکبیر

چکیده

پارامترهای انتشار گاز نظیر نرخ ظاهری سطح حباب(Sb) و ماندگی گاز (εg) در کارایی عملکرد ستون‌های فلوتاسیون موثر هستند. در این مقاله تأثیر سرعت جریان گاز و خوراک ورودی، غلظت کف‌ساز، ارتفاع کف، ابعاد ذرات و درصد جامد خوراک ورودی روی پارامترهای انتشار گاز بررسی شده است. آزمایش ها در ستونی با جنس پلاکسی گلاس با قطر 10 و ارتفاع 400 سانتیمتر انجام شد. ماندگی گاز با استفاده از روش اختلاف فشار اندازه گیری شد و اندازه حباب از روش تحلیل جابجایی شار تخمین زده شد. نتایج آزمایش‌ها نشان داد که با افزایش سرعت ظاهری گاز و میزان کف‌ساز، نرخ ظاهری سطح حباب افزایش می‌یابد، در حالیکه افزایش درصد جامد خوراک ورودی کاهش Sb و εg  را به دنبال دارد. اگرچه ماندگی گاز به دلیل افزایش در سرعت جریان خوراک کاهش می‌یابد ولی تأثیر آن در مقایسه با سرعت جریان گاز و میزان کف‌ساز قابل چشم پوشی است. با کاهش ارتفاع ناحیه کف ستون فلوتاسیون از 110 به 70 سانتیمتر، کاهش جزئی در ماندگی گاز در منطقه جمع‌آوری مشاهده می‌شود و این نرخ با افزایش سرعت جریان گاز افزایش می‌یابد. تأثیر ابعاد ذرات بر ماندگی گاز در دو دامنه ابعادی 100-150 میکرون و 45-63 میکرون نشان داد که با کاهش ابعاد ذرات ماندگی گاز کاهش می‌یابد. با استفاده از روش های آماری، مدلی برای پیش‌بینی نرخ ظاهری سطح حباب بر اساس ماندگی گاز با دقت بسیار بالایی ارائه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effective Parameters on Gas Dispersion Variables in Flotation Columns

چکیده [English]

The crucial role of bubble surface area flux (Sb) and gas hold-up (εg) in flotation columns efficiency has been proved. This research examines the effect of gas flow rate, feed rate, frother concentration, froth height, particle size and solid percent variables on gas dispersion parameters (gas hold-up and bubble surface area flux). Test work has been conducted in a column with 10 cm diameter and 400 cm height. Feed to flotation column has been provided by rougher mechanic cell concentrate of Miduk copper complex. Gas hold-up has been measured by pressure difference method and bubble size has been estimated by drift flux analysis. The results of the study reveal that superficial gas velocity and frother rate have a positive impact on bubble surface area flux; however, the increase of pulp solid percent leads to a drop in Sb. Studies on the gas dispersion parameters in flotation columns show that although gas hold-up decreases due to the improvement of feed flow rate, its effect, in comparison to the air flow rate and frother rate, is negligible. Gas hold-up decreases in collection zone when solid percent increases and this decreasing rate has become more significant in coarser particles. Likewise, by decreasing the froth height, low reduction can be observed in gas hold-up. Finally, a model for prediction of Sb on the basis of εg has been carefully presented by the use of statistical methods.
 

کلیدواژه‌ها [English]

  • Flotation Column
  • Gas Hold-up
  • Bubble Surface Area Flux
  • Gas Dispersion

 

  [1]      Wills, B.A., 2006. “Mineral Processing Technology - An Intoduction to the Practical Aspects of Ore Treatment and Mineral Recovery”. Seventh edition, Elsevier Science & Technology Books.

  [2]      Finchو J. A., Dobby, G. S., 1990 “Column Flotation”, Pergamon Press, London.

  [3]      Pu, M., Gupta Y. P. and AI taweel, A. M.Model predictive control of flotation columns, Intern. Conf. on Column Flotation’91, Sudbury, Canada, Vol. 2, 467–478.

  [4]      Bergh, L. G., Yianatos, J. B, Acuna, C. P., Perez H. and Lopez, F. 1999. "Supervisory control at Salvador flotation columns" , Minerals Engineering , 12 (7), 733-744.

  [5]      Gorain, B. K., Franzidis, J. P., and Manlapig, E. V., 1999. “The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data”, Minerals Engineering, 12 (3), 309–322.

  [6]      Hernández, H., Gómez, C. O. and Finch, J. A., 2003. “Gas dispersion and de-inking in a flotation Column”, Minerals Engineering, 16 (8), 739–744.

  [7]      Kracht, W., Vallebuona, G., and Casali, A., 2005. “Rate constant modelling for batch flotation, as a function of gas dispersion properties”, Minerals Engineering, 18 (11), 1067–1076.

  [8]      Gorain B.K., Franzidis J.-P., Manlapig E.V., 1997. “Studies on Impeller Type, Impeller Speed and Air Flow Rate in an Industrial Scale Flotation Cell – Part 4: Effect of Bubble Surface Area Flux on Flotation Performance”, Minerals Engineering, 10 (4), 367-379.

  [9]      Klimpel, R. R, Dhansen, R. and Fee, B. S., 1986. “Selection of flotation reagents for mineral flotation”. in Design and Installation Concentration and Dewatering Circuit, A.L. Mular and M.A. Anderson (Eds), Chapter 26, 384-404.

[10]      Deglon, D. A., Egya-Mensah, D., and Franzidis, J. P., 2000. “Review of hydrodynamics and gas dispersion in flotation cells on South African platinum concentrators”, Minerals Engineering, 13 (3), 235–244.

[11]      Heiskanen, K., 2000. “On the relationship between flotation rate and bubble surface area flux”, Minerals Engineering, 13 (2), 141–149.

[12]      Luttrell, G. H., Mankosa, M. J. and Yoon, R. H., 1993. “Design and scale-up criteria for column flotation”, XIII International Mineral Processing Congress, Sydney, May 23-28, 785-791.

[13]      Xu, M., Uribe-Salas, A. and Finch, J. A., 1991. “Maximum gas and bubble surface rates in column flotation”, International Journal of Mineral Processing, 32 (3-4), 233-250.

[14]      Power, A. and Franzidis, J. P., 2000. The characterization of hydrodynamic conditions in industrial flotation cells”, Proceedings AusIMM 7th Mill Operators Conference, Kalgoorlie, WA, 243–255.

[15]      Banisi, S., Finch, J. A., Laplante, A. R. and Weber, M. E., 1995. Effect of solid particles on gas holdup in flotation columns-I Measurement”, Chemical Engineering Science, 50 (14), pp 2329-2334.

[16]      Shukla, S. C., Kundu, G. and Mukherjee, D., 2010. Study of gas holdup and pressure characteristics in a column flotation cell using coal”, Minerals Engineering, 6 (1), 55-67.

[17]      Massinaei, M. and Doostmohammadi, R., 2010. "Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques," Mineral Engineering , 23 (2), 83-90, 2010.

[18]      Banisi S., Finch J. A., 1994. “Technical Note: Reconciliation of Bubble Size Estimation Methods Using Drift Flux Analysis”, Minerals Engineering, 7 (12), 1555–1559.

[19]      Banisi, S., Finch, J. A., Laplante, A. R. and Weber M. E., 1995. “Effect of solid particles on gas holdup in flotation columns-II Investigation of mechanisms of gas holdup reduction in presence of solids, Chemical Engineering Science, 50 (14), 2335-2342.

[20]      Smith, P.G., Warren, L. J., 1989. “Entrainment of Particles into Flotation Froths”, Mineral Processing and Extractive Metallurgy Review: An International Journal, 5 (1-4), 123-145.