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ABSTRACT 

There are few algorithms, developed for optimisation of ultimate stope limits. These are either heuristic or 
rigorous. The rigorous algorithms such as the application of the branch and bound technique and dynamic 
programming approach do not apply on 3D problems. Heuristic algorithms such as floating stope of Datamine 
and the Maximum Value Neighbourhood (MVN) algorithm do not guarantee the true optimum solution; they 
only provide a solution, which is close to the optimum one. The MVN algorithm runs on a fixed 3D economic 
block model of the ore-body and forms the best neighbourhood of each block in the model. The algorithm starts 
from the first block to form its MVN and include it into the ultimate limit. Then it proceeds to the last block to 
build up the small MVN as largely as possible. However, since it is a heuristic approach, the final stope limit 
obtained may contain a number of unnecessary waste blocks, ie they may be excluded from the ultimate stope 
without violating the stope constraints. In addition, there may be a number of necessary ore blocks, excluded 
from the ultimate stope. This paper introduces the extension of the MVN algorithm to run a multiple pass and 
check if it is possible to remove waste blocks from the ultimate stope and add other ore blocks to it. Running the 
multiple pass makes the ultimate stope limits as close as possible to the optimum one. 
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1. INTRODUCTION 
 

Generally, current algorithms, developed for 
optimisation of mining limits are implemented on a 
block model of the orebody. These algorithms are 
either rigorous or heuristic. The rigorous algorithms 
are supported by mathematical proof and hence, 
they guarantee the true optimum solution of the 
mining limits, for the level they are applied. In open 
pit cases, for example, the two dimensional 
dynamic programming (DP) algorithm [1] is a 
rigorous algorithm that guarantees the true 
optimum pit limits in two dimensions. In contrast, 
the moving cone (MC) technique [2] is a heuristic 
algorithm that provides a solution, which is not 
necessarily the optimum one, although it is very 
close to the optimum.  
For underground cases, there are few algorithms 
available for optimisation of the stope layout. The 
rigorous algorithms include the application of 
dynamic programming technique in 2D problems [3] 
and the use of Branch and Bound technique in 1D 
problems [4]. These algorithms fail to provide 3D 
analysis and/or they are tailored for specific mining 
methods. Recently, a new application of the DP 
technique was suggested [5]; however, it is useful 
for vein type deposits and does not comply with 3D 
cases. Heuristic approaches, mainly, include the 
floating stope of Datamine [6] and the Maximum 

Value Neighbourhood (MVN) algorithm [7].  
Algorithms, usually, apply a recursive operation 
over the blocks of the model to find the optimum 
limits. For heuristic algorithms, this process is a 
search technique, which strongly depends on the 
search direction. This paper examines the MVN 
algorithm, illustrates its failure to provide the true 
optimum solution, studies the influence of the 
search order, explores the main causes of the 
problem and suggests a second pass over the block 
model as a modification to improve the algorithm 
performance.   

 

2. THE MVN ALGORITHM 

The neighbourhood (NB) concept was first 
introduced as a basis for optimisation of the 3D 
stope layout [7]. It was then developed using the 
neighbourhood concept and economic factors, 
which determine the blocks economic values [8]. A 
non-commercial software tool, called SLO, has 
been developed for implementation of the 
algorithm [9].    
The MVN algorithm uses a fixed economic block 
model of an ore-body and searches for the best 
combination of blocks to provide a maximum profit 
while imposing certain geo-technical and mining 
constraints, eg the minimum stope geometry. The 
minimum size of the stope must ensure that a 
sufficient space is provided for activities of drilling, 
blasting and loading equipment, as well as 
movement of personnel and machinery in the stope. 
The NB concept formulates a minimum stope size 
in terms of neighbourhood factor for each block. 
The set of sequential blocks that could be mined to 
satisfy mining constraints defines the 
neighbourhood for a given block. The size of this 
set is called the “order of neighbourhood” (Onb). 
Fig. 1 shows examples of 1D neighbourhood. An 
example of 3D neighbourhoods is illustrated in Fig. 
2. 
In order to locate the optimum neighbourhood of a 
block, the economic value of each neighbourhood 
has to be calculated and compared with one 
another. The term neighbourhood value (NBV) 
represents the net value of the neighbourhood if all 
its blocks are extracted as a set. For each block, the 
NB with the highest value is considered the 
maximum NBV and included into the stope, ie its 
members are flagged “1”. The process of locating 
and flagging the MVN for a block with a 
neighbourhood order of 2 is illustrated in Fig. 3. 
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Row of blocks: B1 B2 B3 B4 B7B5 B6

Possible NBs
for Block B4:

(Onb = 3)

NB2:

NB1:

NB3:

B5 B6

B3 B5

B2 B3

B4

B4

B4

Possible NBs
for Block B4:

(Onb = 2) NB2:

NB1: B5

B3

B4

B4

 
Fig. 1: Possible neighbourhoods of the Block B4, for NB orders of 2 and 3 

 

Two neighbourhoods whose common member is only
Block Bijk.

 
Fig. 2: An example of 3D neighbourhoods (Onb = 2×2×2) 

 

 
3. INFLUENCE OF SEARCH DIRECTION  
Algorithms, usually, apply a recursive operation on 
blocks of the model to find the optimum limits. 
These blocks are normally taken into consideration 
in special order, eg from left to right or vice versa. 
Rigorous algorithms are independent of the 
direction of the search as they use mathematical 
formulations. So, the pit limit defined by using the 
DP algorithm is unique, regardless of applying the 

algorithm from left to right or from right to left. 
However, heuristic algorithms such as moving cone 
in open pit cases are search-based and hence, the 
block order or the search direction has a great 
impact on the results, ie the pit limit defined by 
applying the algorithm from left to right may differ 
from that of applying the algorithm from right to 
left. 
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� SBR = 3.3; Onb = 4

Minimum  stope length = 10 m       block length = 3 m

NBV1 = 6

41 3 - 1 - 2 1 3

j-2 j-1 j j+1 j+2

NBV2 = 2

NBV3 = 4

NB4 NB3 NB2 NB1

NBVS = {6, 2, 4, 7} �  MNBV = 7 = NBV4 �  MVN = NB4

4 - 2 1 3

- 1 4 - 2 1

3 - 1 4 - 2

1 3 - 1 4NBV4 = 7

j+3j-3

NB4 = {Bj-3, Bj-2, Bj-1, Bj} � Flagging: [ Fj-3 =1; Fj-2 = 1; Fj-1 = 1;Fj = 1]

 

Fig. 3: Locating the Maximum Value Neighbourhood 

 

In underground cases, the floating stope technique 
and the MVN algorithm are based on a heuristic 
approach; therefore, the results are dependent on 
the order of blocks, on which these algorithm are 
implemented. The MVN algorithm is implemented 
on all non-negative blocks. Although it is not 
necessary to take blocks into consideration in any 
special order, for the sake of simplicity, the 
algorithm takes them in the order of rows, columns 
and sections, in their positive directions, as it 
provides the most convenient way to search for 
blocks. If the algorithm is applied through the 
positive direction, the optimised ultimate stope is 
not necessarily similar to that obtained when 

applying it through the negative direction. Consider 
a simple model section with five rows and 12 
columns, as shown in Fig. 4. Assume a one 
dimensional constraint of three blocks as the 
minimum stope length. Applying the MVN 
algorithm once from left to right and then vice 
versa yield in similar results for rows 1, 3 and 4 but 
different results for rows 2 and 5. 
As a result, both solutions are non-optimum. This 
situation does not necessarily occur all the time. In 
many cases, the results may coincide to the true 
optimum; however, the key point is that the true 
optimum solution is not guaranteed. 
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i \ j� 1 2 3 4 5 6 7 8 9 10 11 12 
1 2 1 -1 0 3 2 -2 4 1 2 -2 -1 
2 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 
3 3 0 4 1 -2 -1 0 -1 2 1 -1 2 
4 -1 0 -2 1 2 0 4 -1 1 2 2 -1 
5 6 -1 -3 1 0 -3 5 3 1 -4 2 0 

(a) 
 

i \ j� 1 2 3 4 5 6 7 8 9 10 11 12 
1 2 1 -1 0 3 2 -2 4 1 2 -2 -1 
2 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 
3 3 0 4 1 -2 -1 0 -1 2 1 -1 2 
4 -1 0 -2 1 2 0 4 -1 1 2 2 -1 
5 6 -1 -3 1 0 -3 5 3 1 -4 2 0 

(b) 
 

Fig. 4: Application of the MVN algorithm a) from left to right b) from right to l eft 
 

 
3.1 Causes of the Problem  
This problem may occur, at least, in two situations, 
ie tie cases and negative marginal values, as 
explained below. 
Tie cases: Through the process of defining the 
maximum neighbourhood value (MNBV), there 
may be two or more neighbourhoods with the same 
and maximum net values. So, there is a tie for the 
algorithm to decide. Normally, in tie cases, the first 
true condition (the maximum net value here) is 
selected and the procedure continues, ignoring the 
other true condition. However, defining the first  
true condition strongly depends on the direction of 
the search. In fact, what is the first , when applying 
the algorithm from left to right, is exactly the last, 
when applying the algorithm in the opposite 
direction. This will cause inclusion of different 
neighbourhoods (ie a set of blocks) to the ultimate 
limits. This difference (error) may or may not be 
covered by the MVN of the next blocks, as the 
algorithm proceeds. If the difference is not covered 
later, the final results will be different for two 
directions. One may decide to accept both (or all) 
true conditions in tie cases to solve the problem, but 
it should be noted that the economic constraint 
(maximum profit) may be violated due to the 
inclusion of less valuable blocks.  

Negative marginal values: The marginal value of 
the maximum value neighbourhood (MVN) is 
evaluated to determine its contribution to the final 
stope. It is the real difference that the inclusion of 
the MVN will make in the stope value. The 
marginal value of an MVN is defined by the total 
value of those elements of the MVN that are new to 
the final stope, and contribute to the stope value 
when considering the current block. In essence, the 
marginal value is defined as elements of an MVN 
that are not flagged already. Negative marginal 
values, which cause a decrease in the stope value, 
may occur when valuable elements of the current 
MVN have been flagged earlier and the costly 
elements are new to the stope.  
The above fact may influence the results of the 
algorithm, when applying it in different directions. 
In one direction, the MVN of a block may provide a 
negative marginal value. So, the algorithm proceeds 
to take the next block into consideration without 
including the elements of that MVN into the final 
stope. This may or may not be covered by 
considering MVNs of next blocks, as the algorithm 
proceeds. This situation may or may not happen 
when applying the algorithm in the opposite 
direction. 
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3.2 A One Dimensional Example 
In order to shed light on the issue, Rows 2 and 5 
of the example shown in Fig.1, which give 
different results in different search directions are 
examined here. Details of the application of the 
MVN algorithm on the second row are illustrated 
in Fig. 5, in both positive and negative directions. 
The block economic values (BEV) are shown 
inside each cell of the model. Since the stope 
length is limited to a minimum of three blocks, the 
order of neighbourhood is 3 and hence there are 

three possible neighbourhoods for each block to 
compare. Neighbourhood values (NBV) for each 
block is shown below the block in three lines. The 
MVN of each block is also shown with an ellipse 
drawn beneath the elements of that 
neighbourhood. An "NF" sign has been used for 
non-feasible neighbourhoods. If a block value is 
negative or the block is already flagged, the block 
is skipped. 
 

BEV 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 
NBV(1) 3   3   2   1   
NBV(2) NF   4   -1   3   
NBV(3) NF   0   2   4   

             
 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 
         Stope value: 13 

(a) left to right 

 j 1 2 3 4 5 6 7 8 9 10 11 12 
BEV 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 

NBV(1) NF   0   2   4   
NBV(2) NF   4   -1   3   
NBV(3) 3   3   2   1   

             
 5 -1 -1 2 3 -2 1 0 1 3 -1 -1 
         Stope value: 11 

(b) right to left 

Fig. 5: Different results of the MVN algorithm due to a tie occurrence 
 
Fig. 5a shows the application of the algorithm from 
left to right. As illustrated, the block B7 with the net 
value of (1) has two equal neighbourhood values, 
NBV(1) and NBV(3), which has the maximum net 
value among the three neighbourhoods.   
NB(1) = {(1), (0), (1)} � NBV(1) = 2 

NB(2) = {(-2), (1), (0)}� NBV(2) = -1 

NB(3) = {(3), (-2), (1)}� NBV(3) = 2 

The algorithm takes the first true condition and 
includes B7, B8 and B9 to the final stope. In this 
case, B6 with the value of (-2) is left un-mined. The 
final stope will then have two parts, one extended 
from B1 to B5 and the other extended from B7 to 
B10. 
 

 
 
Fig. 5b shows the application of the algorithm from 
right to left. In this case, neighbourhoods of the 
same block, B7, are located in the opposite 
direction, ie: 
NB(1) = {(1), (-2), (3)}� NBV(1) = 2 

NB(2) = {(0), (1), (-2)}� NBV(2) = -1 

NB(3) = {(1), (0), (1)} � NBV(3) = 2 

The algorithm takes the first true condition and 
includes B7, B6 and B5 to the final stope. The final 
stope will then be extended from B1 to B10. Details 
of the application of the MVN algorithm on Row 5 
are illustrated in Fig. 6, for both positive and 
negative directions. 
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j � 1 2 3 4 5 6 7 8 9 10 11 12 

BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0 
NB(1) 2   -2 2   0   NF NF 
NB(2) NF   -2 -2   9   -2 NF 
NB(3) NF   -3 -2   5   -1 -2 

             
 6 -1 -3 1 0 -3 5 3 1 -4 2 0 
         Stope value: 8 

 (a) left to right 

  j  1 2 3 4 5 6 7 8 9 10 11 12 
BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0 

NB(1) NF   -3 -2    9  -1 -2 
NB(2) NF   -2 -2    0  -2 NF 
NB(3) 2   -2 2    -1  NF NF 

     MV<0        
 6 -1 -3 1 0 -3 5 3 1 -4 2 0 
         Stope value: 11 

 (b) right to left  

Fig. 6: Different results of the MVN algorithm due to the negative marginal value 

 
Fig. 6.a shows the application of the algorithm from 
left to right. As illustrated, the block, B5 with the 
net value of (0) has its first neighbourhood (ie {B5, 
B6, B7}) with the value of (2) as its MVN. So the 
algorithm includes blocks B5, B6 and B7 to the final 
stope. In other words, although B5 is zero and B6 is 
negative, they are included because B7 pays for 
their cost. When applying the algorithm from right 
to left (Fig. 6.b), the valuable block, B7, is flagged 
and included in the stope before processing B5 since 
it is an element of the MVN of B9, which was 
processed earlier. The MVN of B5 is its last 
neighbourhood (ie {B7, B6, B5}). The valuable 
block B7 is already flagged and a care should be 
taken not to include it twice in the ultimate stope. 
Therefore, only costly blocks B5 and B6 are subject 
to flag and inclusion in the final stope. This means 
that the marginal value of the MVN of B5 is the 
cumulative value of B6 and B7, which are new to 
the stope. Due to the negative marginal value, the 
algorithm rejects including the MVN. This 
difference between application of the algorithm on 
opposite directions yields to different ultimate 
stope. 

 
 
3.3 A Two Dimensional Example 
Now consider an example with a 2D 
neighbourhood, shown in Fig. 7. The model 
consists of six rows and eight columns. The 
neighbourhood is assumed to be 2 × 2, ie the stope 
should be at least two blocks long and two blocks 
wide. The blocks included into the final stope, as 
the optimised, are shaded. 
As Fig. 7 shows the crucial blocks are B17, B27, B33 
and B64. The first three blocks have made problems 
due to various marginal values in different 
directions and the fourth block due to a tie case. 
Possible neighbourhoods for B33 are shown in Fig. 
8, regardless of their numbers since the 
neighbourhood numbering depends on the search 
direction. As Fig. 8 shows, the neighbourhood with 
the value of (2) has the maximum neighbourhood 
value (MNBV). When applying the algorithm from 
left, it is found that the left column of the 
neighbourhood is flagged already, shown in Fig. 9 
as shaded blocks. Therefore, only blocks located in 
the right column are new to the stope, which make 
a marginal value of (-1). Due to the negative 
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marginal value (MV), the MVN of the block is 
ignored and hence, blocks of the right column (B33 
and B43) are not included into the stope, at this 

stage. The lower block of the right column, B43, has 
been further included to satisfy the constraints of 
neighbourhoods of blocks located at next row. 

 1 2 3 4 5 6 7 8 
1 1 0 1 -2 3 1 0 2 
2 2 -1 2 1 1 1 -2 -1 
3 1 -1 0 -2 2 1 -1 1 
4 2 4 -1 3 1 -1 2 3 
5 -1 2 1 3 -1 2 0 1 
6 2 1 0 -2 3 -1 4 1 

a) Applying the algorithm from left to right 
 

 1 2 3 4 5 6 7 8 
1 1 0 1 -2 3 1 0 2 
2 2 -1 2 1 1 1 -2 -1 
3 1 -1 0 -2 2 1 -1 1 
4 2 4 -1 3 1 -1 2 3 
5 -1 2 1 3 -1 2 0 1 
6 2 1 0 -2 3 -1 4 1 

b) Applying the algorithm from right to left 

Fig. 7: A 2D example with a neighbourhood of 2 × 2 

 

0 -2  -1 0  2 1  -1 2 
-1 3  4 -1  0 -2  -1 0 

NBV = 0  (Max) NBV = 2  NBV = 1  NBV = 0 

Fig. 8: Neighbourhoods of B33 

-1 0  -1 0 
4 -1  4 -1 

��� 
MNBV = 2 
MV = -1 

  
MNBV = 2 

MV = 2 

Fig. 9: Various marginal values for B33 in opposite directions 

When applying the algorithm from right to left, all 

elements of the MVN of the block are new to the 

stope and hence, the marginal value would be (2), 

the same as its MNBV. Therefore, due to the non-

negative marginal value, all elements of the MVN 

are included into the final stope and the stope value 

is updated. 

Difference in inclusion or exclusion of B64 has been  

made by a tie occurrence when examining B65. 

There are two feasible neighbourhoods for B65, as 

shown in Fig. 10. So, the first true condition is 

different for opposite search directions, which has 

influenced on exclusion of the B64 element. The 

examining block is made bold and underlined to be 

distinguished. 

3 -1  -1 2 
-2 3  3 -1 

NBV = 3  NBV = 3 
Fig. 10: The tie occurrence for B65 
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4. MULTIPLE PASS 
It is known from the above that the optimised stope 
applying the MVN algorithm may include some 
negatively valued blocks, which are not necessary 
in the ultimate stope. That is, the mining constraints 
are not violated if these blocks are removed from 
the ultimate stope. In addition, some zero or 
positively valued blocks may be found excluded 
from the ultimate stope, which may be added 
without violation of constraints. A supplement to 
the MVN algorithm is introduced in this paper to 
improve the optimisation results and make the 
ultimate stope as close as possible to the true 
optimum.  
After conducting the first pass on blocks applying 
the MVN algorithm, a second pass is run to check 
possibility of including those non-negatively valued 
blocks, which have not been included into the 
ultimate stope through the fisrt (general) pass. After 
completion of this stage, another pass is run to 
check possibility of excluding those negatively 
valued blocks from the final stope. The supplement 
is called the MVN Multiple Pass algorithm and is 
consisted of two parts, as described below.  
4.1 Checking Inclusion of Non-negative blocks 

A non-negative block, which is not included into 
the ultimate stope, may have a negative MNBV or a 
negative MV. In any case, after completion of the 
first pass, if it is re-examined, it might be included 
due to the possible changes made to the flags of its 
neighbours. The supplement algorithm suggests 
forming bridging blocks and checking the bridge 
for non-negativity. The bridge of the block is 
defined as the set of blocks required to join the re-
examined block to the ultimate stope (including the 
block itself) while satisfying the stope size 
constraints. The bridge would, obviously, be a 
subset of one of the block's neighbourhoods. In 
other words, the bridge is consisted of the marginal 
blocks of a neighbourhood of the block. So, the 
proposed algorithm 1) constructs all 
neighbourhoods of the block, 2) computes the MV 
of each neighbourhood, 3) selects the one with the 
maximum MV and 4) adds all the marginal blocks 

to the ultimate stope if they contribute non-
negatively to the stope (ie if MV ≥ 0). The 
flowchart for checking possibility of inclusion of 
non-negative blocks is illustrated in Fig. 11. 

4.2 Checking Exclusion of Negative Blocks 
The ultimate stope, normally, includes some 
negatively valued blocks. These have been included 
to satisfy the minimum stope size. Due to 
overlapping MVNs, some of these blocks may no 
longer be required if all MVNs are examined. In 
other words, overlapping MVNs may help each 
other to satisfy the constraints and hence, avoid 
inclusion of some waste blocks. This will be known 
after completion of the general (first) pass.  
A waste block may be excluded from the stope if 
when excluded, the stope constraints are not 
violated. For example, in a one dimensional 
constraint, a waste block may be flagged off if 
leaving it un-mined, two separate stopes satisfying 
the minimum size are generated on both sides of the 
waste block. Therefore, if the order of 
neighbourhood is three blocks through the stope 
length, a waste block is taken out of the stope, if 
three consecutive blocks on the right and three 
consecutive blocks on the left of that waste block 
are all flagged. Generally speaking, the following 
set of conditions should be satisfied to exclude a 
waste block, Bijk:  













====

====

+++

−−−

1...

:stoperight  make To )

1...

:stopeleft  make To )

,,,,2,,1

,,,,2,,1

kjikjikji

kjikjikji

FFF

b

FFF

a

λ

λ            (1) 

where λ is the order of neighbourhood in the 
specified direction and "F" is the flag of the block, 
indicating the block is included into the stope if it is 
"1" and excluded if it is "0". If the block is on the 
left border of the model, the first set of conditions is 
not applied, and if the block is on the right border 
of the model, the second set of conditions is not 
applied. 
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Y 

N 

N 

Add marginal blocks 
to the stope. 

Take the 
next block. 

Determine the maximum 
marginal value. 

Construct all NBs. 

Take the 1st excluded ore block. 

Compute all marginal values. 

Is the maximum 
marginal value>= 0?  

START 

Last block? 

END 

Y 

 

Fig. 11: The flowchart of the multiple pass algorithm for non-negative blocks 

 

For 2D and 3D constraints, the situation is more 
complicated and the simple expansion of above 
conditions to two or three dimensions is not 
adequate. Generally speaking, exclusion of any 
block Bijk may influence all blocks within its 
neighbourhood space. So, each block of the 
neighbourhood space should be checked to make 
sure that it forms at least one flagged 
neighbourhood that does not contain Bijk to allow 
exclusion of Bijk. Relations expressed in Equation 
(1) above are, in fact, the reduced form of these 
conditions to one dimension. 
 
 

  

 
 

In order to run this pass, negative flagged blocks 
should be sorted first. If a waste block is removed 
from the ultimate stope, it may prevent exclusion of 
the next waste block, ie the chance of exclusion is 
reduced with the order of search. Therefore, the 
algorithm starts to examine the block with the 
minimum value (ie the most costly block) then the 
second and so on. The flowchart for checking 
possibility of exclusion of waste blocks from the 
ultimate stope is illustrated in Fig. 12. 
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5. NUMERICAL EXAMPLES 
Consider the 1D example, shown in Fig.3a. 
Applying the first pass of the algorithm has resulted 
in two separate stopes; the first one is consisted of 
three blocks B1 to B3 with the net value of (2) and 
the second one is consisted of five blocks B5 to B9 
valued at (6). Three non-negative blocks, B4, B11 
and B12 with a total value of (3) are not included 
into the final stope. Instead, three waste blocks, B2, 
B3 and B6 with a total cost of (-7) have been 
included into the stope.  
Non-negative blocks are checked firstly for 
possibility of inclusion. Clearly, B4 may be added to 
the stope since the bridging blocks is consisted of 

the block itself with a net value of (1). Blocks B11 
and B12 may not still be included into the stope due 
to their negative marginal value. Bridging blocks 
and the marginal values for these cases together 
with the updated stope are shown in Fig. 13. The 
updated stope value is increased by (1) to a total net 
value of (9). 
Another pass is required to check waste blocks of 
the ultimate stope to see if they could be taken out. 
In the 1D example, there is only λx, which equals 
three blocks. Blocks B2 and B3 may not be excluded 
from the stope since their exclusion will make a 
violation to the minimum stope size. For B2, the 
following conditions should be satisfied: 
F-1 = F0 = F1 = 1; and F3 = F4 = F5 = 1 

 

START 

Do not remove Bi jk. 

Last 
element? 

Remove Bi jk. 

END 

Take the next element. 

There is at least one 
flagged NB that does 

not contain Bi jk. 

Construct the NB set. 

Take the 1st flagged element of the NB 
space. 

N 

Y 

Y 

N 

Construct the NB space.  
Exclude Bi jk itself, from the space. 

 
Fig. 12: The flowchart of the multiple pass algorithm for negative blocks 
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 1 2 3 4 5 6 7 8 9 10 11 12  
BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0  

              
   Check for B4     Check for B11  
MV = 1 -1 -3 1      -4 2 0 MV = -2 
MV = 1  -3 1 0    1 -4 2  MV = -2 
MV = 1   1 0 -3         
          Check for B12  
          -4 2 0 MV = -2 

Updated Stope 
 6 -1 -3 1 0 -3 5 3 1 -4 2 0  

Fig. 13: A 1D example of applying the 2nd pass on non-negative non-flagged blocks 

 
From the above F0 and F-1 are undefined so the 
block is not excluded. Similarly, for B3, the 
following conditions should be satisfied: 

F0 = F1 = F2 = 1; and F4 = F5 = F6 = 1 
From the above, F0 is undefined so the block is not 
excluded. However, the situation for B6 is different 
after inclusion of B4 to the stope. For this block all 

the following conditions are true: 
 

F3 = F4 = F5 = 1; and F7 = F8 = F9 = 1 
and hence, it may be taken out to improve the 
ultimate stope as shown in Fig. 14. Through this 
pass, the stope is separated into two parts and the 
stope net value is increased by (3) to a total net 
value of (12). 

 
 

 
j  1 2 3 4 5 6 7 8 9 10 11 12 

BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0 
           
 Check for B2          

× 6 B2 -3 1 0        
             
  Check for B3         

× 6 -1 B3 1 0 -3       
             
     Check for B6      

√   -3 1 0 B6 5 3 1    
  
 updated ultimate stope 
 6 -1 -3 1 0 -3 5 3 1 -4 2 0 

Fig. 14: A 1D example of applying the second pass on non-negative non-flagged blocks 

As a 2D example, consider the model discussed 
above in Fig. 7a. Blocks B17, B18 and B33 are 
considered ore but are not included in the ultimate 
stope. The maximum marginal value provided by 
both B17 and B18 is the net value of the 
neighbourhood {B17, B18, B27, B28}, which is valued 
at (-1); therefore, they may not be added to the final 
stope. The bridge for inclusion of B33 includes the 
block itself with the value of (0); so it is added to 
the final stope. This will make no change in the 

stope net value but it increases the ore content.  
Waste blocks contained in the ultimate stope 
include B14, valued at (-2) and B22, B32, B37, B43, B51, 
B55 and B66, each valued at (-1). Therefore, the 
algorithm is applied in the order those blocks are 
sorted.  

1. Exclusion of B14 violates neighbourhood of B24; 
so, it may not be removed. 

2. Exclusion of B22 violates neighbourhoods of 
B11, B12 and B21; so, it may not be removed. 
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3. Exclusion of B32 violates neighbourhood of 
B31; so, it may not be removed. 

4. Exclusion of B37 violates neighbourhood of 
B38; so, it may not be removed. 

5. Exclusion of B43 does not violate any 
neighbourhoods; so, it may be removed. 

6. Exclusion of B51 violates neighbourhoods of 
B61; so, it may not be removed. 

7. Exclusion of B55 violates neighbourhoods of 
B44, B45, B54 and B65; so, it may not be 
removed. 

8. Exclusion of B66 violates neighbourhoods of 
B65 and B56; so, it may not be removed. 

As a result, in this pass B43 is excluded from the 
ultimate stope, as shown in Fig. 15 and the total 
stope value is increased by one. 

 
 

 1 2 3 4 5 6 7 8 
1 1 0 1 -2 3 1 0 2 
2 2 -1 2 1 1 1 -2 -1 
3 1 -1 0 -2 2 1 -1 1 
4 2 4 -1 3 1 -1 2 3 
5 -1 2 1 3 -1 2 0 1 
6 2 1 0 -2 3 -1 4 1 

Fig. 15: A 2D example of applying the second pass

 

6. CONCLUSIONS 
The MVN algorithm Developed for optimisation of 
stope boundaries uses a heuristic approach and 
hence, it may not guarantee the true optimum 
limits. The results of applying the algorithm is 
strongly dependent of the direction, in which it is 
applied. The main causes are tie cases and negative 
marginal values. A modification of the algorithm 
was introduced in this paper to run a second pass of 
applying the algorithm over the block model. The 
second pass could improve the obtained ultimate 
layout by incresing the total stope value or the ore 
content with no extra costs. The proposed 
modification provides a 3D analysis and attempts to 
add non-negative blocks to the stope, which were 
already excluded during the first pass. It also 
attempts to remove the negative blocks from the 
stope, which were already included into the stope 
during the first pass. Numerical examples were 
used to discuss the problem causes and to illustrate 
how the second pass of the algorithm is applied 
successfully over the block model. Heuristic 
algorithms, due to their nature, may not guarantee 
the true optimum. However, it was shown that the 
MVN Multiple Pass algorithm may improve the 
ultimate stope layout and makes it closer to the true 
optimum solution. 
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