
Vol. 1, No. 2, 2006, pp. 7-20

 ۸۶ تا ۷۳، صفحه ١٣٨٥، سال ۲دوره اول، شماره

Iranian Journal of Mining Engineering
(IRJME)

"مهندسي معدن"پژوهشی -نشريه علمی

THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF

STOPE BOUNDARIES

Majid Ataee-pour1

1- Amirkabir University of Technology, Tehran, Iran

(map60@aut.ac.ir)

ABSTRACT

There are few algorithms, developed for optimisation of ultimate stope limits. These are either heuristic or
rigorous. The rigorous algorithms such as the application of the branch and bound technique and dynamic
programming approach do not apply on 3D problems. Heuristic algorithms such as floating stope of Datamine
and the Maximum Value Neighbourhood (MVN) algorithm do not guarantee the true optimum solution; they
only provide a solution, which is close to the optimum one. The MVN algorithm runs on a fixed 3D economic
block model of the ore-body and forms the best neighbourhood of each block in the model. The algorithm starts
from the first block to form its MVN and include it into the ultimate limit. Then it proceeds to the last block to
build up the small MVN as largely as possible. However, since it is a heuristic approach, the final stope limit
obtained may contain a number of unnecessary waste blocks, ie they may be excluded from the ultimate stope
without violating the stope constraints. In addition, there may be a number of necessary ore blocks, excluded
from the ultimate stope. This paper introduces the extension of the MVN algorithm to run a multiple pass and
check if it is possible to remove waste blocks from the ultimate stope and add other ore blocks to it. Running the
multiple pass makes the ultimate stope limits as close as possible to the optimum one.

Keywords: Optimisation, Stope boundaries, Algorithm, Neighbourhood, Multiple pass

 MAJID ATAEE-POUR

۞ 8 ۸۵

1. INTRODUCTION

Generally, current algorithms, developed for
optimisation of mining limits are implemented on a
block model of the orebody. These algorithms are
either rigorous or heuristic. The rigorous algorithms
are supported by mathematical proof and hence,
they guarantee the true optimum solution of the
mining limits, for the level they are applied. In open
pit cases, for example, the two dimensional
dynamic programming (DP) algorithm [1] is a
rigorous algorithm that guarantees the true
optimum pit limits in two dimensions. In contrast,
the moving cone (MC) technique [2] is a heuristic
algorithm that provides a solution, which is not
necessarily the optimum one, although it is very
close to the optimum.
For underground cases, there are few algorithms
available for optimisation of the stope layout. The
rigorous algorithms include the application of
dynamic programming technique in 2D problems [3]
and the use of Branch and Bound technique in 1D
problems [4]. These algorithms fail to provide 3D
analysis and/or they are tailored for specific mining
methods. Recently, a new application of the DP
technique was suggested [5]; however, it is useful
for vein type deposits and does not comply with 3D
cases. Heuristic approaches, mainly, include the
floating stope of Datamine [6] and the Maximum

Value Neighbourhood (MVN) algorithm [7].
Algorithms, usually, apply a recursive operation
over the blocks of the model to find the optimum
limits. For heuristic algorithms, this process is a
search technique, which strongly depends on the
search direction. This paper examines the MVN
algorithm, illustrates its failure to provide the true
optimum solution, studies the influence of the
search order, explores the main causes of the
problem and suggests a second pass over the block
model as a modification to improve the algorithm
performance.

2. THE MVN ALGORITHM

The neighbourhood (NB) concept was first
introduced as a basis for optimisation of the 3D
stope layout [7]. It was then developed using the
neighbourhood concept and economic factors,
which determine the blocks economic values [8]. A
non-commercial software tool, called SLO, has
been developed for implementation of the
algorithm [9].
The MVN algorithm uses a fixed economic block
model of an ore-body and searches for the best
combination of blocks to provide a maximum profit
while imposing certain geo-technical and mining
constraints, eg the minimum stope geometry. The
minimum size of the stope must ensure that a
sufficient space is provided for activities of drilling,
blasting and loading equipment, as well as
movement of personnel and machinery in the stope.
The NB concept formulates a minimum stope size
in terms of neighbourhood factor for each block.
The set of sequential blocks that could be mined to
satisfy mining constraints defines the
neighbourhood for a given block. The size of this
set is called the “order of neighbourhood” (Onb).
Fig. 1 shows examples of 1D neighbourhood. An
example of 3D neighbourhoods is illustrated in Fig.
2.
In order to locate the optimum neighbourhood of a
block, the economic value of each neighbourhood
has to be calculated and compared with one
another. The term neighbourhood value (NBV)
represents the net value of the neighbourhood if all
its blocks are extracted as a set. For each block, the
NB with the highest value is considered the
maximum NBV and included into the stope, ie its
members are flagged “1”. The process of locating
and flagging the MVN for a block with a
neighbourhood order of 2 is illustrated in Fig. 3.

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 9 ۸۴

Row of blocks: B1 B2 B3 B4 B7B5 B6

Possible NBs
for Block B4:

(Onb = 3)

NB2:

NB1:

NB3:

B5 B6

B3 B5

B2 B3

B4

B4

B4

Possible NBs
for Block B4:

(Onb = 2) NB2:

NB1: B5

B3

B4

B4

Fig. 1: Possible neighbourhoods of the Block B4, for NB orders of 2 and 3

Two neighbourhoods whose common member is only
Block Bijk.

Fig. 2: An example of 3D neighbourhoods (Onb = 2×2×2)

3. INFLUENCE OF SEARCH DIRECTION
Algorithms, usually, apply a recursive operation on
blocks of the model to find the optimum limits.
These blocks are normally taken into consideration
in special order, eg from left to right or vice versa.
Rigorous algorithms are independent of the
direction of the search as they use mathematical
formulations. So, the pit limit defined by using the
DP algorithm is unique, regardless of applying the

algorithm from left to right or from right to left.
However, heuristic algorithms such as moving cone
in open pit cases are search-based and hence, the
block order or the search direction has a great
impact on the results, ie the pit limit defined by
applying the algorithm from left to right may differ
from that of applying the algorithm from right to
left.

 MAJID ATAEE-POUR

۞ 10 ۸۳

� SBR = 3.3; Onb = 4

Minimum stope length = 10 m block length = 3 m

NBV1 = 6

41 3 - 1 - 2 1 3

j-2 j-1 j j+1 j+2

NBV2 = 2

NBV3 = 4

NB4 NB3 NB2 NB1

NBVS = {6, 2, 4, 7} � MNBV = 7 = NBV4 � MVN = NB4

4 - 2 1 3

- 1 4 - 2 1

3 - 1 4 - 2

1 3 - 1 4NBV4 = 7

j+3j-3

NB4 = {Bj-3, Bj-2, Bj-1, Bj} � Flagging: [Fj-3 =1; Fj-2 = 1; Fj-1 = 1;Fj = 1]

Fig. 3: Locating the Maximum Value Neighbourhood

In underground cases, the floating stope technique
and the MVN algorithm are based on a heuristic
approach; therefore, the results are dependent on
the order of blocks, on which these algorithm are
implemented. The MVN algorithm is implemented
on all non-negative blocks. Although it is not
necessary to take blocks into consideration in any
special order, for the sake of simplicity, the
algorithm takes them in the order of rows, columns
and sections, in their positive directions, as it
provides the most convenient way to search for
blocks. If the algorithm is applied through the
positive direction, the optimised ultimate stope is
not necessarily similar to that obtained when

applying it through the negative direction. Consider
a simple model section with five rows and 12
columns, as shown in Fig. 4. Assume a one
dimensional constraint of three blocks as the
minimum stope length. Applying the MVN
algorithm once from left to right and then vice
versa yield in similar results for rows 1, 3 and 4 but
different results for rows 2 and 5.
As a result, both solutions are non-optimum. This
situation does not necessarily occur all the time. In
many cases, the results may coincide to the true
optimum; however, the key point is that the true
optimum solution is not guaranteed.

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 11 ۸۲

i \ j� 1 2 3 4 5 6 7 8 9 10 11 12
1 2 1 -1 0 3 2 -2 4 1 2 -2 -1
2 5 -1 -1 2 3 -2 1 0 1 3 -1 -1
3 3 0 4 1 -2 -1 0 -1 2 1 -1 2
4 -1 0 -2 1 2 0 4 -1 1 2 2 -1
5 6 -1 -3 1 0 -3 5 3 1 -4 2 0

(a)

i \ j� 1 2 3 4 5 6 7 8 9 10 11 12
1 2 1 -1 0 3 2 -2 4 1 2 -2 -1
2 5 -1 -1 2 3 -2 1 0 1 3 -1 -1
3 3 0 4 1 -2 -1 0 -1 2 1 -1 2
4 -1 0 -2 1 2 0 4 -1 1 2 2 -1
5 6 -1 -3 1 0 -3 5 3 1 -4 2 0

(b)

Fig. 4: Application of the MVN algorithm a) from left to right b) from right to l eft

3.1 Causes of the Problem
This problem may occur, at least, in two situations,
ie tie cases and negative marginal values, as
explained below.
Tie cases: Through the process of defining the
maximum neighbourhood value (MNBV), there
may be two or more neighbourhoods with the same
and maximum net values. So, there is a tie for the
algorithm to decide. Normally, in tie cases, the first
true condition (the maximum net value here) is
selected and the procedure continues, ignoring the
other true condition. However, defining the first
true condition strongly depends on the direction of
the search. In fact, what is the first , when applying
the algorithm from left to right, is exactly the last,
when applying the algorithm in the opposite
direction. This will cause inclusion of different
neighbourhoods (ie a set of blocks) to the ultimate
limits. This difference (error) may or may not be
covered by the MVN of the next blocks, as the
algorithm proceeds. If the difference is not covered
later, the final results will be different for two
directions. One may decide to accept both (or all)
true conditions in tie cases to solve the problem, but
it should be noted that the economic constraint
(maximum profit) may be violated due to the
inclusion of less valuable blocks.

Negative marginal values: The marginal value of
the maximum value neighbourhood (MVN) is
evaluated to determine its contribution to the final
stope. It is the real difference that the inclusion of
the MVN will make in the stope value. The
marginal value of an MVN is defined by the total
value of those elements of the MVN that are new to
the final stope, and contribute to the stope value
when considering the current block. In essence, the
marginal value is defined as elements of an MVN
that are not flagged already. Negative marginal
values, which cause a decrease in the stope value,
may occur when valuable elements of the current
MVN have been flagged earlier and the costly
elements are new to the stope.
The above fact may influence the results of the
algorithm, when applying it in different directions.
In one direction, the MVN of a block may provide a
negative marginal value. So, the algorithm proceeds
to take the next block into consideration without
including the elements of that MVN into the final
stope. This may or may not be covered by
considering MVNs of next blocks, as the algorithm
proceeds. This situation may or may not happen
when applying the algorithm in the opposite
direction.

 MAJID ATAEE-POUR

۞ 12 ۸۱

3.2 A One Dimensional Example
In order to shed light on the issue, Rows 2 and 5
of the example shown in Fig.1, which give
different results in different search directions are
examined here. Details of the application of the
MVN algorithm on the second row are illustrated
in Fig. 5, in both positive and negative directions.
The block economic values (BEV) are shown
inside each cell of the model. Since the stope
length is limited to a minimum of three blocks, the
order of neighbourhood is 3 and hence there are

three possible neighbourhoods for each block to
compare. Neighbourhood values (NBV) for each
block is shown below the block in three lines. The
MVN of each block is also shown with an ellipse
drawn beneath the elements of that
neighbourhood. An "NF" sign has been used for
non-feasible neighbourhoods. If a block value is
negative or the block is already flagged, the block
is skipped.

BEV 5 -1 -1 2 3 -2 1 0 1 3 -1 -1
NBV(1) 3 3 2 1
NBV(2) NF 4 -1 3
NBV(3) NF 0 2 4

 5 -1 -1 2 3 -2 1 0 1 3 -1 -1
 Stope value: 13

(a) left to right

 j 1 2 3 4 5 6 7 8 9 10 11 12
BEV 5 -1 -1 2 3 -2 1 0 1 3 -1 -1

NBV(1) NF 0 2 4
NBV(2) NF 4 -1 3
NBV(3) 3 3 2 1

 5 -1 -1 2 3 -2 1 0 1 3 -1 -1
 Stope value: 11

(b) right to left

Fig. 5: Different results of the MVN algorithm due to a tie occurrence

Fig. 5a shows the application of the algorithm from
left to right. As illustrated, the block B7 with the net
value of (1) has two equal neighbourhood values,
NBV(1) and NBV(3), which has the maximum net
value among the three neighbourhoods.
NB(1) = {(1), (0), (1)} � NBV(1) = 2

NB(2) = {(-2), (1), (0)}� NBV(2) = -1

NB(3) = {(3), (-2), (1)}� NBV(3) = 2

The algorithm takes the first true condition and
includes B7, B8 and B9 to the final stope. In this
case, B6 with the value of (-2) is left un-mined. The
final stope will then have two parts, one extended
from B1 to B5 and the other extended from B7 to
B10.

Fig. 5b shows the application of the algorithm from
right to left. In this case, neighbourhoods of the
same block, B7, are located in the opposite
direction, ie:
NB(1) = {(1), (-2), (3)}� NBV(1) = 2

NB(2) = {(0), (1), (-2)}� NBV(2) = -1

NB(3) = {(1), (0), (1)} � NBV(3) = 2

The algorithm takes the first true condition and
includes B7, B6 and B5 to the final stope. The final
stope will then be extended from B1 to B10. Details
of the application of the MVN algorithm on Row 5
are illustrated in Fig. 6, for both positive and
negative directions.

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 13 ۸۰

j � 1 2 3 4 5 6 7 8 9 10 11 12

BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0
NB(1) 2 -2 2 0 NF NF
NB(2) NF -2 -2 9 -2 NF
NB(3) NF -3 -2 5 -1 -2

 6 -1 -3 1 0 -3 5 3 1 -4 2 0
 Stope value: 8

 (a) left to right

  j 1 2 3 4 5 6 7 8 9 10 11 12
BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0

NB(1) NF -3 -2 9 -1 -2
NB(2) NF -2 -2 0 -2 NF
NB(3) 2 -2 2 -1 NF NF

 MV<0
 6 -1 -3 1 0 -3 5 3 1 -4 2 0
 Stope value: 11

 (b) right to left

Fig. 6: Different results of the MVN algorithm due to the negative marginal value

Fig. 6.a shows the application of the algorithm from
left to right. As illustrated, the block, B5 with the
net value of (0) has its first neighbourhood (ie {B5,
B6, B7}) with the value of (2) as its MVN. So the
algorithm includes blocks B5, B6 and B7 to the final
stope. In other words, although B5 is zero and B6 is
negative, they are included because B7 pays for
their cost. When applying the algorithm from right
to left (Fig. 6.b), the valuable block, B7, is flagged
and included in the stope before processing B5 since
it is an element of the MVN of B9, which was
processed earlier. The MVN of B5 is its last
neighbourhood (ie {B7, B6, B5}). The valuable
block B7 is already flagged and a care should be
taken not to include it twice in the ultimate stope.
Therefore, only costly blocks B5 and B6 are subject
to flag and inclusion in the final stope. This means
that the marginal value of the MVN of B5 is the
cumulative value of B6 and B7, which are new to
the stope. Due to the negative marginal value, the
algorithm rejects including the MVN. This
difference between application of the algorithm on
opposite directions yields to different ultimate
stope.

3.3 A Two Dimensional Example
Now consider an example with a 2D
neighbourhood, shown in Fig. 7. The model
consists of six rows and eight columns. The
neighbourhood is assumed to be 2 × 2, ie the stope
should be at least two blocks long and two blocks
wide. The blocks included into the final stope, as
the optimised, are shaded.
As Fig. 7 shows the crucial blocks are B17, B27, B33
and B64. The first three blocks have made problems
due to various marginal values in different
directions and the fourth block due to a tie case.
Possible neighbourhoods for B33 are shown in Fig.
8, regardless of their numbers since the
neighbourhood numbering depends on the search
direction. As Fig. 8 shows, the neighbourhood with
the value of (2) has the maximum neighbourhood
value (MNBV). When applying the algorithm from
left, it is found that the left column of the
neighbourhood is flagged already, shown in Fig. 9
as shaded blocks. Therefore, only blocks located in
the right column are new to the stope, which make
a marginal value of (-1). Due to the negative

 MAJID ATAEE-POUR

۞ 14 ۷۹

marginal value (MV), the MVN of the block is
ignored and hence, blocks of the right column (B33
and B43) are not included into the stope, at this

stage. The lower block of the right column, B43, has
been further included to satisfy the constraints of
neighbourhoods of blocks located at next row.

 1 2 3 4 5 6 7 8
1 1 0 1 -2 3 1 0 2
2 2 -1 2 1 1 1 -2 -1
3 1 -1 0 -2 2 1 -1 1
4 2 4 -1 3 1 -1 2 3
5 -1 2 1 3 -1 2 0 1
6 2 1 0 -2 3 -1 4 1

a) Applying the algorithm from left to right

 1 2 3 4 5 6 7 8
1 1 0 1 -2 3 1 0 2
2 2 -1 2 1 1 1 -2 -1
3 1 -1 0 -2 2 1 -1 1
4 2 4 -1 3 1 -1 2 3
5 -1 2 1 3 -1 2 0 1
6 2 1 0 -2 3 -1 4 1

b) Applying the algorithm from right to left

Fig. 7: A 2D example with a neighbourhood of 2 × 2

0 -2 -1 0 2 1 -1 2
-1 3 4 -1 0 -2 -1 0

NBV = 0 (Max) NBV = 2 NBV = 1 NBV = 0

Fig. 8: Neighbourhoods of B33

-1 0 -1 0
4 -1 4 -1

���
MNBV = 2
MV = -1

 
MNBV = 2

MV = 2

Fig. 9: Various marginal values for B33 in opposite directions

When applying the algorithm from right to left, all

elements of the MVN of the block are new to the

stope and hence, the marginal value would be (2),

the same as its MNBV. Therefore, due to the non-

negative marginal value, all elements of the MVN

are included into the final stope and the stope value

is updated.

Difference in inclusion or exclusion of B64 has been

made by a tie occurrence when examining B65.

There are two feasible neighbourhoods for B65, as

shown in Fig. 10. So, the first true condition is

different for opposite search directions, which has

influenced on exclusion of the B64 element. The

examining block is made bold and underlined to be

distinguished.

3 -1 -1 2
-2 3 3 -1

NBV = 3 NBV = 3
Fig. 10: The tie occurrence for B65

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 15 ۷۸

4. MULTIPLE PASS
It is known from the above that the optimised stope
applying the MVN algorithm may include some
negatively valued blocks, which are not necessary
in the ultimate stope. That is, the mining constraints
are not violated if these blocks are removed from
the ultimate stope. In addition, some zero or
positively valued blocks may be found excluded
from the ultimate stope, which may be added
without violation of constraints. A supplement to
the MVN algorithm is introduced in this paper to
improve the optimisation results and make the
ultimate stope as close as possible to the true
optimum.
After conducting the first pass on blocks applying
the MVN algorithm, a second pass is run to check
possibility of including those non-negatively valued
blocks, which have not been included into the
ultimate stope through the fisrt (general) pass. After
completion of this stage, another pass is run to
check possibility of excluding those negatively
valued blocks from the final stope. The supplement
is called the MVN Multiple Pass algorithm and is
consisted of two parts, as described below.
4.1 Checking Inclusion of Non-negative blocks

A non-negative block, which is not included into
the ultimate stope, may have a negative MNBV or a
negative MV. In any case, after completion of the
first pass, if it is re-examined, it might be included
due to the possible changes made to the flags of its
neighbours. The supplement algorithm suggests
forming bridging blocks and checking the bridge
for non-negativity. The bridge of the block is
defined as the set of blocks required to join the re-
examined block to the ultimate stope (including the
block itself) while satisfying the stope size
constraints. The bridge would, obviously, be a
subset of one of the block's neighbourhoods. In
other words, the bridge is consisted of the marginal
blocks of a neighbourhood of the block. So, the
proposed algorithm 1) constructs all
neighbourhoods of the block, 2) computes the MV
of each neighbourhood, 3) selects the one with the
maximum MV and 4) adds all the marginal blocks

to the ultimate stope if they contribute non-
negatively to the stope (ie if MV ≥ 0). The
flowchart for checking possibility of inclusion of
non-negative blocks is illustrated in Fig. 11.

4.2 Checking Exclusion of Negative Blocks
The ultimate stope, normally, includes some
negatively valued blocks. These have been included
to satisfy the minimum stope size. Due to
overlapping MVNs, some of these blocks may no
longer be required if all MVNs are examined. In
other words, overlapping MVNs may help each
other to satisfy the constraints and hence, avoid
inclusion of some waste blocks. This will be known
after completion of the general (first) pass.
A waste block may be excluded from the stope if
when excluded, the stope constraints are not
violated. For example, in a one dimensional
constraint, a waste block may be flagged off if
leaving it un-mined, two separate stopes satisfying
the minimum size are generated on both sides of the
waste block. Therefore, if the order of
neighbourhood is three blocks through the stope
length, a waste block is taken out of the stope, if
three consecutive blocks on the right and three
consecutive blocks on the left of that waste block
are all flagged. Generally speaking, the following
set of conditions should be satisfied to exclude a
waste block, Bijk:













====

====

+++

−−−

1...

:stoperight make To)

1...

:stopeleft make To)

,,,,2,,1

,,,,2,,1

kjikjikji

kjikjikji

FFF

b

FFF

a

λ

λ (1)

where λ is the order of neighbourhood in the
specified direction and "F" is the flag of the block,
indicating the block is included into the stope if it is
"1" and excluded if it is "0". If the block is on the
left border of the model, the first set of conditions is
not applied, and if the block is on the right border
of the model, the second set of conditions is not
applied.

 MAJID ATAEE-POUR

۞ 16 ۷۷

Y

N

N

Add marginal blocks
to the stope.

Take the
next block.

Determine the maximum
marginal value.

Construct all NBs.

Take the 1st excluded ore block.

Compute all marginal values.

Is the maximum
marginal value>= 0?

START

Last block?

END

Y

Fig. 11: The flowchart of the multiple pass algorithm for non-negative blocks

For 2D and 3D constraints, the situation is more
complicated and the simple expansion of above
conditions to two or three dimensions is not
adequate. Generally speaking, exclusion of any
block Bijk may influence all blocks within its
neighbourhood space. So, each block of the
neighbourhood space should be checked to make
sure that it forms at least one flagged
neighbourhood that does not contain Bijk to allow
exclusion of Bijk. Relations expressed in Equation
(1) above are, in fact, the reduced form of these
conditions to one dimension.

In order to run this pass, negative flagged blocks
should be sorted first. If a waste block is removed
from the ultimate stope, it may prevent exclusion of
the next waste block, ie the chance of exclusion is
reduced with the order of search. Therefore, the
algorithm starts to examine the block with the
minimum value (ie the most costly block) then the
second and so on. The flowchart for checking
possibility of exclusion of waste blocks from the
ultimate stope is illustrated in Fig. 12.

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 17 ۷۶

5. NUMERICAL EXAMPLES
Consider the 1D example, shown in Fig.3a.
Applying the first pass of the algorithm has resulted
in two separate stopes; the first one is consisted of
three blocks B1 to B3 with the net value of (2) and
the second one is consisted of five blocks B5 to B9
valued at (6). Three non-negative blocks, B4, B11
and B12 with a total value of (3) are not included
into the final stope. Instead, three waste blocks, B2,
B3 and B6 with a total cost of (-7) have been
included into the stope.
Non-negative blocks are checked firstly for
possibility of inclusion. Clearly, B4 may be added to
the stope since the bridging blocks is consisted of

the block itself with a net value of (1). Blocks B11
and B12 may not still be included into the stope due
to their negative marginal value. Bridging blocks
and the marginal values for these cases together
with the updated stope are shown in Fig. 13. The
updated stope value is increased by (1) to a total net
value of (9).
Another pass is required to check waste blocks of
the ultimate stope to see if they could be taken out.
In the 1D example, there is only λx, which equals
three blocks. Blocks B2 and B3 may not be excluded
from the stope since their exclusion will make a
violation to the minimum stope size. For B2, the
following conditions should be satisfied:
F-1 = F0 = F1 = 1; and F3 = F4 = F5 = 1

START

Do not remove Bi jk.

Last
element?

Remove Bi jk.

END

Take the next element.

There is at least one
flagged NB that does

not contain Bi jk.

Construct the NB set.

Take the 1st flagged element of the NB
space.

N

Y

Y

N

Construct the NB space.
Exclude Bi jk itself, from the space.

Fig. 12: The flowchart of the multiple pass algorithm for negative blocks

 MAJID ATAEE-POUR

۞ 18 ۷۵

 1 2 3 4 5 6 7 8 9 10 11 12
BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0

 Check for B4 Check for B11
MV = 1 -1 -3 1 -4 2 0 MV = -2
MV = 1 -3 1 0 1 -4 2 MV = -2
MV = 1 1 0 -3
 Check for B12
 -4 2 0 MV = -2

Updated Stope
 6 -1 -3 1 0 -3 5 3 1 -4 2 0

Fig. 13: A 1D example of applying the 2nd pass on non-negative non-flagged blocks

From the above F0 and F-1 are undefined so the
block is not excluded. Similarly, for B3, the
following conditions should be satisfied:

F0 = F1 = F2 = 1; and F4 = F5 = F6 = 1
From the above, F0 is undefined so the block is not
excluded. However, the situation for B6 is different
after inclusion of B4 to the stope. For this block all

the following conditions are true:

F3 = F4 = F5 = 1; and F7 = F8 = F9 = 1
and hence, it may be taken out to improve the
ultimate stope as shown in Fig. 14. Through this
pass, the stope is separated into two parts and the
stope net value is increased by (3) to a total net
value of (12).

j 1 2 3 4 5 6 7 8 9 10 11 12

BEV 6 -1 -3 1 0 -3 5 3 1 -4 2 0

 Check for B2

× 6 B2 -3 1 0

 Check for B3

× 6 -1 B3 1 0 -3

 Check for B6

√ -3 1 0 B6 5 3 1

 updated ultimate stope
 6 -1 -3 1 0 -3 5 3 1 -4 2 0

Fig. 14: A 1D example of applying the second pass on non-negative non-flagged blocks

As a 2D example, consider the model discussed
above in Fig. 7a. Blocks B17, B18 and B33 are
considered ore but are not included in the ultimate
stope. The maximum marginal value provided by
both B17 and B18 is the net value of the
neighbourhood {B17, B18, B27, B28}, which is valued
at (-1); therefore, they may not be added to the final
stope. The bridge for inclusion of B33 includes the
block itself with the value of (0); so it is added to
the final stope. This will make no change in the

stope net value but it increases the ore content.
Waste blocks contained in the ultimate stope
include B14, valued at (-2) and B22, B32, B37, B43, B51,
B55 and B66, each valued at (-1). Therefore, the
algorithm is applied in the order those blocks are
sorted.

1. Exclusion of B14 violates neighbourhood of B24;
so, it may not be removed.

2. Exclusion of B22 violates neighbourhoods of
B11, B12 and B21; so, it may not be removed.

 THE MVN MULTIPLE PASS ALGORITHM FOR OPTIMISATION OF STOPE BOUNDARIES

۞ 19 ۷۴

3. Exclusion of B32 violates neighbourhood of
B31; so, it may not be removed.

4. Exclusion of B37 violates neighbourhood of
B38; so, it may not be removed.

5. Exclusion of B43 does not violate any
neighbourhoods; so, it may be removed.

6. Exclusion of B51 violates neighbourhoods of
B61; so, it may not be removed.

7. Exclusion of B55 violates neighbourhoods of
B44, B45, B54 and B65; so, it may not be
removed.

8. Exclusion of B66 violates neighbourhoods of
B65 and B56; so, it may not be removed.

As a result, in this pass B43 is excluded from the
ultimate stope, as shown in Fig. 15 and the total
stope value is increased by one.

 1 2 3 4 5 6 7 8
1 1 0 1 -2 3 1 0 2
2 2 -1 2 1 1 1 -2 -1
3 1 -1 0 -2 2 1 -1 1
4 2 4 -1 3 1 -1 2 3
5 -1 2 1 3 -1 2 0 1
6 2 1 0 -2 3 -1 4 1

Fig. 15: A 2D example of applying the second pass

6. CONCLUSIONS
The MVN algorithm Developed for optimisation of
stope boundaries uses a heuristic approach and
hence, it may not guarantee the true optimum
limits. The results of applying the algorithm is
strongly dependent of the direction, in which it is
applied. The main causes are tie cases and negative
marginal values. A modification of the algorithm
was introduced in this paper to run a second pass of
applying the algorithm over the block model. The
second pass could improve the obtained ultimate
layout by incresing the total stope value or the ore
content with no extra costs. The proposed
modification provides a 3D analysis and attempts to
add non-negative blocks to the stope, which were
already excluded during the first pass. It also
attempts to remove the negative blocks from the
stope, which were already included into the stope
during the first pass. Numerical examples were
used to discuss the problem causes and to illustrate
how the second pass of the algorithm is applied
successfully over the block model. Heuristic
algorithms, due to their nature, may not guarantee
the true optimum. However, it was shown that the
MVN Multiple Pass algorithm may improve the
ultimate stope layout and makes it closer to the true
optimum solution.

REFERENCES

1. Lerchs, H and Grossmann, I F, 1965, “Optimum

Design of Open-Pit Mines”, The Transactions of
CIM Bulletin, Volume LXVIII, pp. 17-24.

2. Pana, M.T., 1965, “The Simulation Approach to
Open Pit Design”, Proceedings of the 5th APCOM
Symposium, Tucson, Arizona, pp. zz1-zz24.

3. Riddle, J M, 1977, “A dynamic programming

solution of a block-caving mine layou,”, Proceedings
of the 14th International APCOM Symposium, SME,
Colorado, pp. 767-780.

4. Ovanic, J and Young, D S, 1995, “Economic

Optimisation of Stope Geometry Using Separable
Programming with Special Branch and Bound
Techniques”, Proceedings of the 3rd Canadian
Conference on Computer Applications in the Mineral
Industry, Montreal, Canada, pp. 129-135.

5. Jalali, S E and Ataee-pour, M, 2004, “A 2D Dynamic
Programming Algorithm to Optimise Stope
Boundaries”, Proceedings of the 13th International
Symposium on Mine Planning and Equipment
Selection – MPES’04, M Hardygora et al (eds.),
Poland, pp. 45-52.

6. Alford, C, 1995, “Optimisation in Underground
Mine Design”, Proceedings of 25th APCOM
Symposium, The Australasian Institute of Mining
and Metallurgy: Brisbane, pp. 213-218.

7. Ataee-pour, M, 1997, “A New Heuristic Algorithm to
Optimise Stope Boundaries”, Proceedings of the
Second Regional APCOM Symposium on Computer
Applications and Operations Research in the Mineral

 MAJID ATAEE-POUR

۞ 20 ۷۳

Industry, L A Puchkov (ed.), Moscow, Russia, 6 p.

8. Ataee-pour, M and Baafi E Y, (1999), “Stope
Optimisation Using the Maximum Value
Neighbourhood (MVN) Concept”, Proceedings of the
28th International Symposium on Computers
Applications in the Minerals Industries –
APCOM’99, K Dagdelen (ed.), Colorado, pp. 493-

501.

9. Ataee-pour, M and Baafi, E Y, 2003, “SLO – A
Program for Stope Limit Optimisation Using A
Heuristic Algorithm”, Proceedings of the 18th
International Mining Congress and Exibition of
Turkey – IMCET’2003, G Ozbayoglu (ed.), Turkey,
pp. 295-301.

